<u>SEMINÁRIO STAB – FENASUCRO</u> <u>AGROIDUSTRIAL</u>

"DESEMPENHO DE CALDEIRAS COM PALHA DE CANA DE AÇÚCAR "

ERICSON MARINO
CONSULTOR
SERTÃOZINHO
28/08/2014

UM "NOVO" COMBUSTÍVEL

- É SABIDO QUE DO TOTAL DE ENERGIA CONTIDA NA CANA INTEGRAL, 1/3 ESTÁ SOB A FORMA DE AÇÚCARES, 1/3 SOB A FORMA DE FIBRA E 1/3 É REPRESENTADO PELA PALHA DA CANA.
- A COLHEITA DA CANA SEM QUEIMA NOS TROUXE A POSSIBILIDADE DE EXPLORARMOS INDUSTRIALMENTE A ENERGIA CONTIDA NA PALHA DA CANA QUE ERA PERDIDA.
- A PALHA EM MISTURA COM O BAGAÇO É UM COMBUSTÍVEL COM CARACTERÍSTICAS DIFERENTES DAS DO BAGAÇO QUE ERA ISENTO OU QUASE ISENTO DE PALHA.
- OS EFEITOS DESTE "NOVO COMBUSTÍVEL" E A QUEIMA DA PALHA EM CALDEIRAS COMO COMBUSTÍVEL COMPLEMENTAR NA GERAÇÃO DE VAPOR, SÃO OS OBJETIVOS DESTA APRESENTAÇÃO. (TALVEZ SEJA MUITA PRETENSÃO).

ALGUMAS CONSIDERAÇÕES

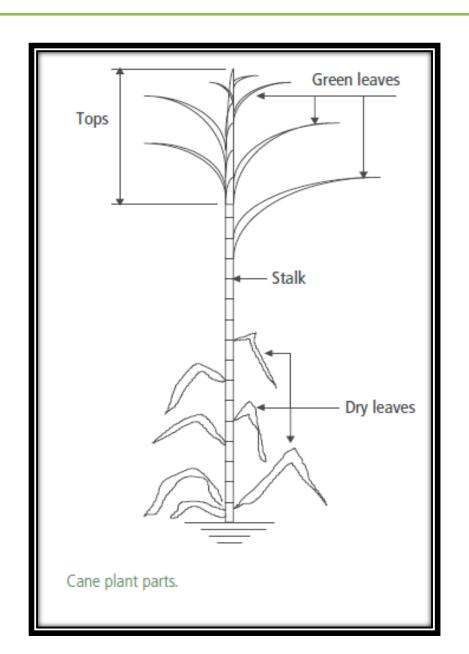
- A PALHA CHEGA À INDÚSTRIA INEVITAVELMENTE COM A CANA COLHIDA SEM QUEIMA. A PALHA CHEGARÁ EM QUANTIDADE, MENOR, DA ORDEM DE 5 A 8 % QUANDO NÃO SE PRETENDE TRAZE-LA DESTA FORMA E EM ATÉ 15 % SOBRE A CANA QUANDO O OBJETIVO FOR PROPOSITALMENTE TRAZE-LA COMO COMBUSTÍVEL SUPLEMENTAR.
- JÁ HÁ EM SÃO PAULO VÁRIAS UNIDADES RECOLHENDO A PALHA NO CAMPO APÓS A COLHEITA PARA USO COMO COMBUSTÍVEL SUPLEMENTAR.
- A GERAÇÃO DE ENERGIA ELÉTRICA NA ENTRESSAFRA É UMA TENDÊNCIA IRREVERSÍVEL E ISTO EXIGE USO ASSOCIADO DE PALHA E BAGAÇO TANTO DURANTE A SAFRA QUANTO NA ENTRESSAFRA.

COMO A PALHA CHEGA ÀS USINAS/DESTILARIAS

- COMO CANA INTEGRAL COLHIDA MANUALMENTE SEM QUEIMA.
- MISTURADA AOS TOLETES DE CANA COLHIDA MECANICAMENTE SEM QUEIMA.
- RECOLHIDA NO CAMPO APÓS TÉRMINO DA COLHEITA, PRINCIPALMENTE QUANDO A CANA FOI COLHIDA MECANICAMENTE. NESTE CASO A PALHA É ENFARDADA. AO CHEGAR Á INDÚSTRIA OS FARDOS SÃO DESMANCHADOS E A PALHA É TRITURADA EM OPERAÇÃO SIMULTANEA.

SOB A FORMA DE CANA INTEGRAL INTEIRA

OU CONTIDA NA CANA COLHIDA MECANICAMENTE


PALHA ENFARDADA

ALGUMAS COMPARAÇÕES ENTRE BAGAÇO E PALHA E MISTURAS

PORQUE É IMPORTANTE CONSIDERAR A PALHA COMO COMBUSTÍVEL COMPLEMENTAR

PARTES DE UM COLMO DE CANA

PALHA NO CAMPO

DEFINIÇÕES

- PALHA SECA: FOLHAS SECAS E BAINHAS QUE CAEM NATURAMENTE DURANTE O CRESCIMENTO DA CANA 11,79 (8,23 a 14,01) TMS/HA
- FOLHAS VERDES: FOLHAS CONCENTRADAS NO TOPO DO COLMO PRÓXIMAS AO PONTEIROS 1,56 (1,25 a 1,93) TMS/HA
- PONTEIROS OU PONTA DA CANA: 0,32 (0,17 a 0,49)
 TMS/HA
- PALHIÇO OU PALHADA: É O QUE FICA NO CAMPO APÓS A COLHEITA SEM QUEIMA 12 A 18 TMS/HA

COMPARAÇÃO BAGAÇO - PALHA

PODER CALORÍFICO SUPERIOR FONTE: PNUD-CTC 2005 HASSUANI, J.S. ET ALL

Average Higher Heating Value (ASTM D 2015) for dry leaves, green leaves, tops and bagasse.

Sample	Higher Heating Value MJ/kg*	
Dry leaves	17.4	
Green leaves	17.4	
Tops	16.4	
Bagasse	18.1	

COMPARAÇÃO BAGAÇO - PALHA

COMPOSIÇÃO % PESO – BASE SECA FONTE: PNUD-CTC 2005 HASSUANI, J.S. ET ALL

Determination % weight*	Dry leaves	Green leaves	Tops	Bagasse
Moisture content	13.5	67.7	82.3	50.2
Ash	3.9	3.7	4.3	2.2
Fixed carbon	11.6	15.7	16.4	18.0
Volatile matter	84.5	80.6	79.3	79.9
* Dry basis				

COMPARAÇÃO BAGAÇO - PALHA

COMPOSIÇÃO % PESO – BASE SECA

FONTE: PNUD-CTC 2005 HASSUANI, J.S. ET ALL

Determination*	Dry leaves	Green leaves	Tops	Bagasse
Carbon	46.2	45.7	43.9	44.6
Hydrogen	6.2	6.2	6.1	5.8
Nitrogen	0.5	1.0	0.8	0.6
Oxygen	43.0	42.8	44.0	44.5
Sulfur	0.1	0.1	0.1	0.1
Chlorine	0.1	0.4	0.7	0.02
* Dry basis				

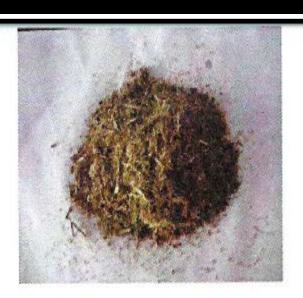
COMPARAÇÃO BAGAÇO – PALHA

ELEMENTOS MINERAIS – BASE SECA FONTE: PNUD-CTC 2005 HASSUANI, J.S. ET ALL

Determination	Dry leaves	Green leaves	Tops	Bagasse	
		Content	(g/kg)*		
P ₂ O ₂	0.5	2.0	2.5	0.5	
$\left(K_{3}^{2}O^{3}\right)$	2.7	13.3	29.5	1.7	
CaO	4.7	3.9	2.6	0.7	
MgO	2.1	2.2	2.5	0.5	
Fe ₃ O ₃	0.9	0.5	0.2	2.3	
$Al_2^2O_3^3$	3.5	1.4	0.5	2.3	
	Content (mg/kg)*				
CuO	< 0.06	< 0.06	< 0.06		
ZnO	9	15	35	-	
MnO ₂	169	120	155	62	
Na ₂ O ²	123	128	119	45	

CARACTERÍSTICAS DO BAGAÇO

FONTE: ENGENHARIA DO AÇÚCAR DE CANA-PETER REIN – 2013 ED.BARTENS


	Brix baixo	Brix médio	Deix alta
	no bagaço	no bagaço	Brix alto no bagaço
Constituinte	tipicamente	tipicamente	tipicamente
	1,5-2,5 %	2,5-4,0 %	> 4,0 %
March Colored Colored Colored Visited		em g/100 g cinza	
SiO ₂	92,80	75,20	54,40
Al_2O_3	3,00	2,70	1,70
Fe ₂ O ₃	0,50	2,60	1,70
TiO ₂	0,01	0,01	0,00
P_2O_5	0,27	1,46	5,02
CaO	0,40	6,90	9,10
MgO	0,70	1,70	4,40
Na ₂ O	0,01	0,60	0,01
K ₂ O	0,70	5,10	13,09
SO ₃	0,50	2,70	8,00
MnO_2	0,02	0,02	0,04
Perda na ignição e oligoelementos	1,09	0,92	1,73
Total	100,00	100,00	100,00
Temperatura de fusão da cinza - atmosfe	era redutora em °C		
Temperatura de deformação	> 1 600	1 300	1 190
Temperatura de amolecimento	> 1 600	1 310	1 200
Temperatura hemisférica	> 1 600	1 330	1 210
Temperatura de fluidez	> 1 600	1 400	1 220
lemperatura de fusão da cinza - atmosfe	ra oxidante em °C		
Temperatura de deformação	> 1 600	1 320	1.210
Temperatura de amolecimento	> 1 600	1 320	1 210 1 220
Temperatura hemisférica	> 1 600	1 350	1 230
Temperatura de fluidez	> 1 600	1 400	1 230
-			
Cinza em g/100 g de bagaço seco	4,170	4,170	4,170
PCS em kJ/kg – seco	18 658	18 658	18 658
Indice de incrustação JdeK	0,008	0,076	0,241
Índice de incrustação DOE	0,016	0,127	0,293
Índice de incrustação JdeK =	$(Na_2O + K_2O)$		
andre of therustação Juen =	SiO_2		
Índice de incrustação DOE =	$\frac{1\ 000\ 000}{H_0} \cdot \text{cinza } \% \cdot (\text{Na}_2\text{O} +$	K ₂ O) %	

Potencial de Incrustação	Baixo	Médio	Alto
ndice de incrustação JdeK em kg/kg	< 0,1	0,1 a 1,0	> 1,0
indice de incrustação DOE em kg álcali/GJ	< 0,17	0,17 a 0,34	> 0,34
			Parkanta
			Referências pág. 76

QUALIDADE DA PALHA SEPARADA USINA BOA VISTA

Palha				
DATA	P.AMOSTRA	P.INICIAL	P.FINAL	UMIDADE
07/10/2013	50,01	732,94	704,55	56,77
08/10/2013	50,02	733,34	702,52	61,62
Palmito				
Data	P.AMOSTRA	P.INICIAL	P.FINAL	UMIDADE
07/10/2013	50,03	726,34	690,78	71,08
08/10/2013	50,01	726,23	689,96	72,53
Palha + Palmito				
Data	P.AMOSTRA	P.INICIAL	P.FINAL	UMIDADE
07/10/2013	50,01	764,53	733,43	62,19
08/10/2013	50,01	764,74	733,3	62,87

Impurezas Vegetais

Impurezas Minerais

Palha Triturada

Bagaço

Bagaço + Palha

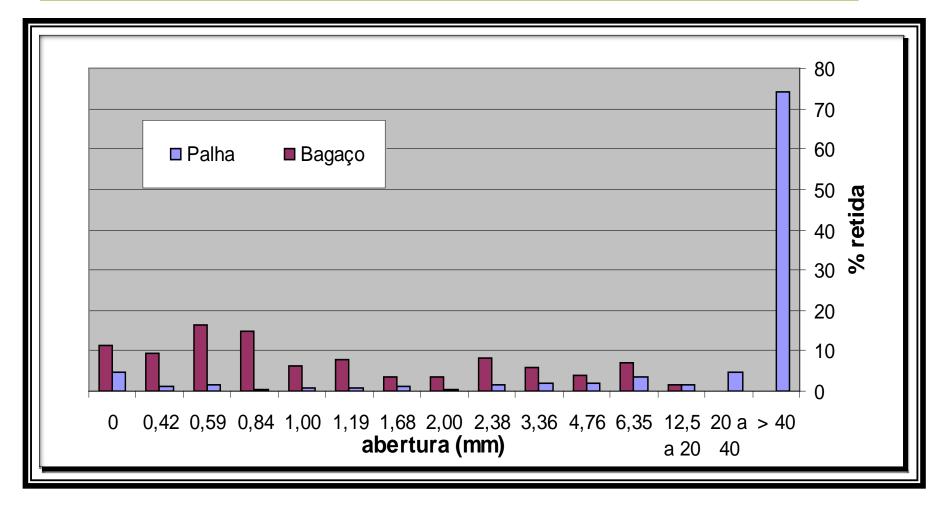
CARACTERÍSTICAS DA PALHA SOB AS DIFERENTES FORMAS DE APROVEITAMENTO

- PALHA NÃO SEPARADA E MOÍDA JUNTO COM A CANA.
- PALHA SEPARADA POR DIFERENTES SISTEMAS E PREPARADA PARA SER ALIMENTADA ÀS CALDEIRAS.

QUALIDADE DA PALHA SEPARADA

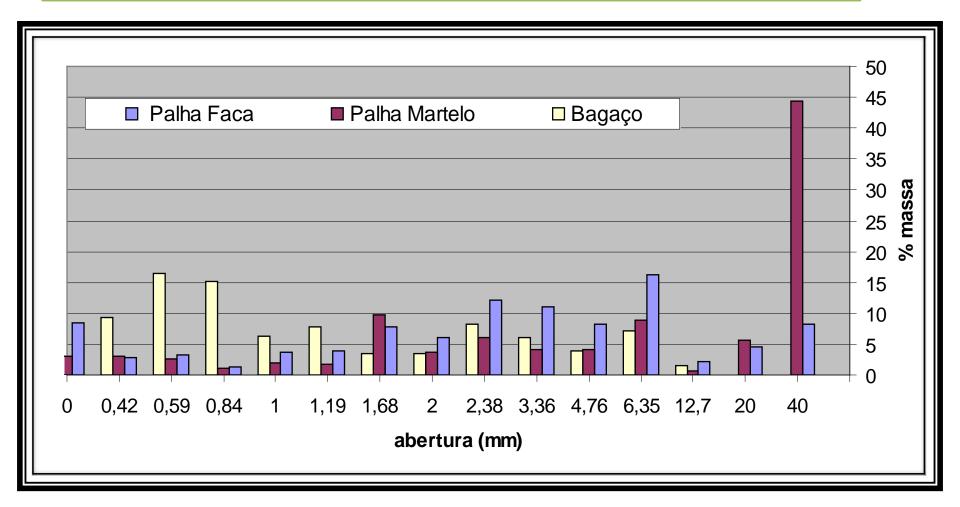
QUALIDADE DA PALHA SEPARADA E TRITURADA POR UM DOS SISTEMAS DISPONÍVEIS

QUALIDADE DA PALHA SEPARADA POR UM DOS SISTEMAS DISPONÍVEIS


BAGAÇO AO SAIR DA MOENDA

USINA IRACEMA – FOTO ADRIANO ALVARINHO

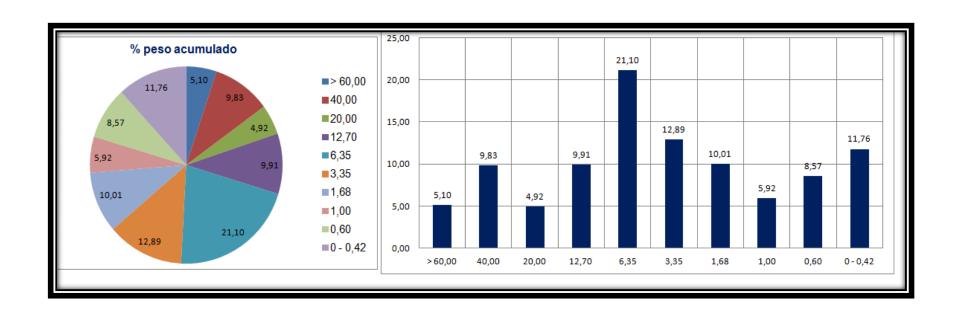
Preparo da Palha para a Combustão


Tamanho das Partículas - Bagaço e Palha "In Natura"

Fonte: CTC – Seminário Tecnologia da Limpeza a Seco - CTC – 17/05/2007

Preparo da Palha para Combustão

Redução do Tamanho das Partículas – Facas X Martelos



Fonte: CTC Seminário – Tecnologia da Limpeza a Seco - CTC – 17/05/2007

QUALIDADE DA PALHA SEPARADA

Tamanho Médio das Partículas – TMP Usina Usina Da Barra – Cosan

Fonte: Paulo Delfini

USO DE DIFERENTES TIPOS DE BIOMASSA COMO COMBUSTÍVEL

- CALDEIRAS E OPERADORES PRECISAM CONHECER AS CARACTERÍTICAS DOS NOVOS COMBUSTÍVEIS DISPONÍVEIS E CONSIDERANDO A QUEIMA SIMULTÂNEA DE BAGAÇO E PALHA DA CANA.
- ESTUDO CUIDADOSO PELOS RESPONSÁVEIS PELA OPERAÇÃO DAS CALDEIRAS NAS USINAS DESTA NOVA REALIDADE.
- RECONHECER QUE HÁ NECESSIDADE DE EVOLUÇÃO NA TECNOLOGIA PARA USO DE COMBUSTÍVEIS DO TIPO "BIOMASSA".
- CONHECER AS LIMITAÇÕES DOS SISTEMAS DE QUEIMA QUE PREDOMINAM NAS USINAS – CALDEIRAS COM GRELHAS E ANÁLISE DE ALTERNATIVAS NA DEFINIÇÃO DO TIPO DE FORNALHA A SER ADOTADO FERNTE A ESTA REALIDADE.

- DOSAGEM DE MATERIAL MULTIDISPERSO E COM AMPLA VARIAÇÃO DE GRANULOMETRIA, TAMANHO E FORMA DAS PARTÍCULAS E BAIXA DENSIDADE.
- A DENSIDADE DA IMPUREZA VEGETAL PODE VARIAR ENTRE 50 E 90 kg/m³.
- A DENSIDADE DO BAGAÇO PODE VARIAR ENTRE 100 E 130 kg/m³.
- A DENSIDADE DA MISTURA BAGAÇO/PALHA SERÁ RESULTANTE DAS PROPORÇÕES DA MISTURA PRATICADA.
- SEGUNDO FABRICANTES CONSULTADOS, OS SISTEMAS DE ALIMENTAÇÃO,
 COM ALGUMAS ADAPTAÇÕES, PODERIAM ALIMENTAR MISTURAS COM ATÉ
 50 % DE PALHA, DESDE QUE ESTA PALHA ESTEJA BEM PREPARADA.
- COM OS SISTEMAS DE ALIMENTAÇÃO EXISTENTES NÃO É POSSÍVEL ALIMENTAR A CALDEIRA SÓ COM PALHA. SERIA DIFÍCIL MANTER A CARGA TÉRMICA NECESSÁRIA PARA GARANTIR A PRODUÇÃO DE VAPOR NA CAPACIDADE NOMINAL DA CALDEIRA.

- COM O AUMENTO DAS IMPUREZAS MINERAIS HÁ NECESSIDADE DE MAIOR FREQUÊNCIA NA LIMPEZA DAS GRELHAS. AS GRELHAS EXISTENTES SÃO DIMENSIONADAS PARA REMOÇÃO DOS TEORES DE CINZAS NORMALMENTE CONTIDOS BAGAÇO TRADICIONAL, OU SEJA, O QUE CONTÉM EM TORNO DE 2,0 A 2,5 % EM BASE SECA.
- A PALHA PODE CONTER O DOBRO DESTE VALOR, OU SEJA, 4,0 A 5,0 % EM BASE SECA.
- O PROBLEMA COM ALTOS TEORES DE CINZAS É O ABAIXAMENTO DO PONTO DE FUSÃO QUE COMPONENTES MINERAIS PRINCIPALEMTE, Na, K, Ca e Mg e FÓSFORO PRODUZEM SOBRE A SÍLICA.
- A PULVERIZAÇÃO DA SÍLICA SOBRE OS ECONOMIZADORES E TUBOS DO 'BOILER BANK' MAIS EXPOSTOS PROVOCA INCRUSTAÇÕES.

- EXEMPLO: NA CALDEIRA DA USINA BOA VISTA COM CAPACIDADE PARA 250 TVH, A CAPACIDADE DE REMOÇÃO DE CINZAS PELA GRELHA PINHOLE É DE 5 t/h. CONFORME INFORMAÇÃO DA CALDEMA, FABRICANTE DAS 2 CALDEIRAS LÁ INSTALADAS.
- "BAGAÇO" RESULTANTE DA MOAGEM COM 15 % DA PALHADA:
 PRODUÇÃO DE VAPOR: 250 TVH. CINZAS POR HORA: 1.030 kg/h.
- "BAGAÇO" COM MISTURA DE 50 % DA PALHADA E 50 % DE BAGAÇO: PRODUÇÃO DE VAPOR: 250 TVH. CINZAS POR HORA: 1.910 kg/h.
- EM AMBAS AS SITUAÇÕES A GRELHA PIN-HOLE CONSEGUE ELIMINAR AS CINZAS GERADAS NA FORNALHA, CUJA CAPACIDADE É DE 5.000 kg/h.

- COM O AUMENTO DAS IMPUREZAS MINERAIS HÁ NECESSIDADE DE MAIOR FREQUÊNCIA NA LIMPEZA DAS GRELHAS. AS GRELHAS EXISTENTES SÃO DIMENSIONADAS PARA REMOÇÃO DE TEORES DE CINZAS NORMALMENTE CONTIDOS BAGAÇO TRADICIONAL, OU SEJA O QUE CONTÉM EM TORNO DE 2,0 A 2,5 % EM BASE SECA.
- A PALHA PODE CONTER O DOBRO DESTE VALOR, OU SEJA, 4,0 A 5,0 % EM BASE SECA.
- CO MO EXEMPLO, PARA CALDEIRA DA USINA BOA VISTA COM CAPACIDADE PARA 250 TVH, A CAPACIDADE DE REMOÇÃO DE CINZAS PELA GRELHA PIN-HOLE É DE 5 TON./H.
- O AUMENTO DAS IMPUREZAS VEGETAIS NA CANA LEVA AO AUMENTO DO TEOR DE CINZAS E DE CLORO NO BAGAÇO.

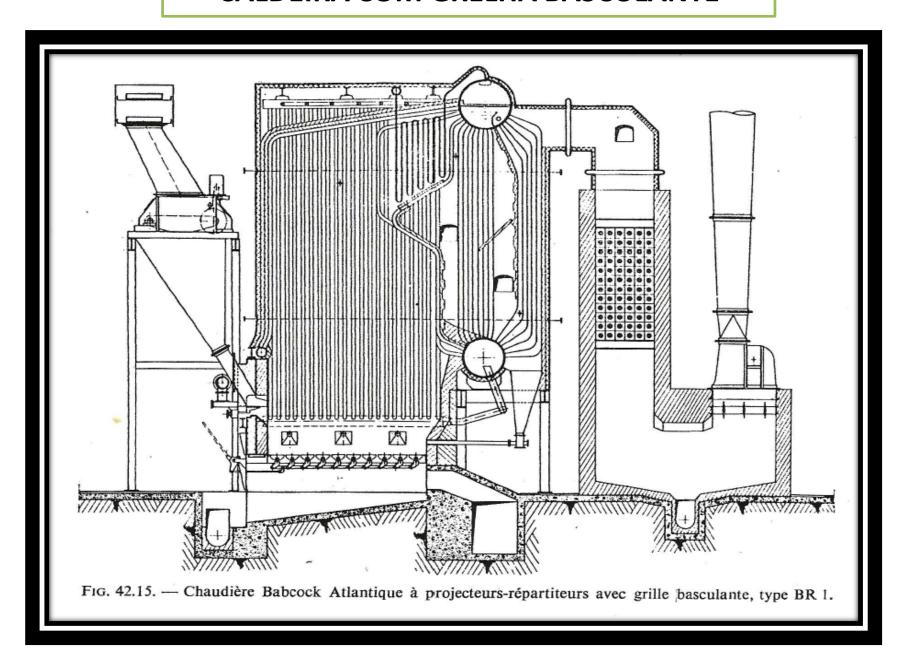
- OS TEORES DE CLORO NO BAGAÇO SEM PALHA NÃO SÃO ALTOS A PONTO DE CAUSAR SÉRIOS DANOS À CALDEIRA.
- OS TEORES DE CLORO NA PALHADA SÃO ELEVADOS E PROPORÇÕES ELEVADAS DE PALHA NA MISTURA BAGAÇO/PALHA PODEM ULTRAPASSAR OS LIMITES RECOMENDADOS.
- A CORROSÃO A QUENTE QUE OS CLORETOS PROVOCAM É A QUE DEVE SER CONSIDERADA.
- OS PONTOS PRINCIPAIS DE CUIDADOS SÃO: A PARTE INFERIOR DA FORNALHA, ONDE A TEMPERATURA DOS GASES É MAIS ALTA E A TEMPERATURA DE METAL DOS TUBOS MAIS BAIXA E O SUPERAQUECEDOR ONDE A TEMPERATURA DOS GASES É MAIS BAIXA, PORÉM A TEMPERATURA DO METAL É MAIS ALTA.
- A PRÁTICA TEM MOSTRADO QUE UM TEOR DE CLORETOS ≤ 0,05%, BASE SECA, COMO MÉDIA DA MISTURA DE COMBUSTÍVEIS, NÃO TEM APRESENTADO OCORRÊNCIAS DE CORROSÃO NA FORNALHA E/OU SUPERAQUECEDOR.

- COM TEOR MAIOR DE CLORETOS NO MIX DE COMBUSTÍVEIS, A VIDA ÚTIL COMEÇA A SER AFETADA.
- COM TEOR DE CLORETOS EM TORNO DE 0,3%, BASE SECA,PRATICAMENTE NÃO HAVERÁ PROBLEMAS RELEVANTES NA FORNALHA. (CLORO: FOLHAS SECAS 0,1%; FOLHAS VERDES 0,4% E PONTEIROS 0,7%).
- INSPEÇÕES ANUAIS NA ÁREA DA FORNALHA IDENTIFICARÃO POSSÍVEIS ATAQUES CORROSIVOS E PODERÁ SER FEITA PROTEÇÃO ESPECIAL NESTAS ÁREAS COM REFRATÁRIOS OU COM APLICAÇÃO DE METAL ESPECÍFICO EM 'OVERLAY'. PORÉM, O SUPERAQUECEDOR JÁ COMEÇA A SOFRER, SENDO ESPERADA SUA SUBSTITUIÇÃO ENTRE 7 E 10 ANOS.
- COM TEOR DE CLORETOS EM TORNO DE 0,8%, BASE SECA, A VIDA ÚTIL DA FORNALHA PODE SE REDUZIR ENTRE 80% E 90% DA SUA VIDA ÚTIL NORMAL, COM O APARECIMENTO DE ÁREAS DE CORROSÃO QUE PODERÃO SER MITIGADAS CONFORME SUGESTÃO ANTERIOR. JÁ O SUPERAQUECEDOR SECUNDÁRIO SOFRERÁ UM ATAQUE MAIS SEVERO, PODENDO SER NECESSÁRIA SUA SUBSTITUIÇÃO ENTRE 3 E 5 ANOS.

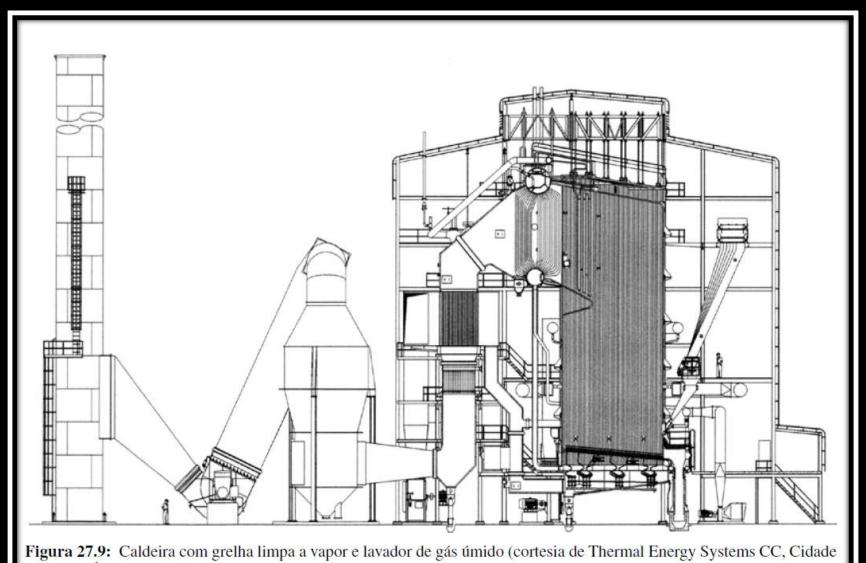
- A VELOCIDADE DOS GASES NO SUPERAQUECEDOR E O ARRASTE DE MATERIAL PARTICULADO DEVEM MERECER ATENÇÃO ESPECIAL NO PROJETO DA CALDEIRA POIS A EROSÃO PROVOCADA PELO MATERIAL ABRASIVO POTENCIALIZA O ATAQUE AOS TUBOS DO SUPERAQUECEDOR. O SISTEMA DE SEPARAÇÃO DE PARTICULADOS DOS GASES EXAUSTOS TAMBÉM FICA SOBRECARREGADO.
- NA COMPRA DE UMA NOVA CALDEIRA AS ESPECIFICAÇÕES DEVEM CONSIDERAR PROJETOS COM BAIXAS VELOCIDADES DOS GASES E ARRANJOS ADEQUADOS DOS SUPERAQUECEDORES, NOS QUAIS A DIREÇÃO DO FLUXO DE VAPOR E O ESPAÇAMENTO ENTRE AS SERPENTINAS MINIMIZEM ESTAS OCORRÊNCIAS.
- DEVE SER CONSIDERADO QUE ESTES CUIDADOS AUMENTAM O CUSTO INICIAL DA CALDEIRA MAS CONTRIBUEM PARA REDUÇÃO SENSÍVEL NO CUSTO DE MANUTENÇÃO E NO PROLONGAMENTO DA VIDA ÚTIL DE PARTES IMPORTANTES DO EQUIPAMENTO.

RESUMO DOS PRINCIPAIS ITENS

- DENSIDADE DA MISTURA PALHA/BAGAÇO: ATÉ 50% SEM PROBLEMAS.
 ALIMENTADORES ATUAIS SÃO SUFICIENTES E PODEM SER MELHORADOS.
- QUANTIDADE DE CINZAS: SEM PROBLEMA PARA AS GRELHAS COMUNS ATÉ 50%.
- RISCOS DE PROBLEMAS CAUSADORES DE 'SLAGGING' E 'FOULING' REDUZIDOS COM CUIDADOS EM PROJETOS NOVOS E NA OPERAÇÃO DE CALDEIRAS EXISTENTES.
- RISCOS DE DESGASTE PREMATURO DAS PARTES INTERNAS DAS CALDEIRAS POR ABRASÃO, CORROSÃO E EROSÃO. SÃO OS QUE DEVEM SER MONITORADOS COM MAIOR CUIDADO DEVIDO AO AUMENTO DO CONTEÚDO NO BAGAÇO DE IMPUREZAS MINERAIS – SOLO/TERRA DE MODO GERAL.
- RISCO DE CORROSÃO INTENSIFICADA NA REGIÃO MAIS FRIA DA CALDEIRA: <u>'PRÉ-AR'</u> <u>'ECONOMIZADOR'</u> E <u>'LAVADOR DE GASES'</u> PELA PRODUÇÃO DE ÁCIDOS ORGÂNICOS ALTAMENTE CORROSIVOS.

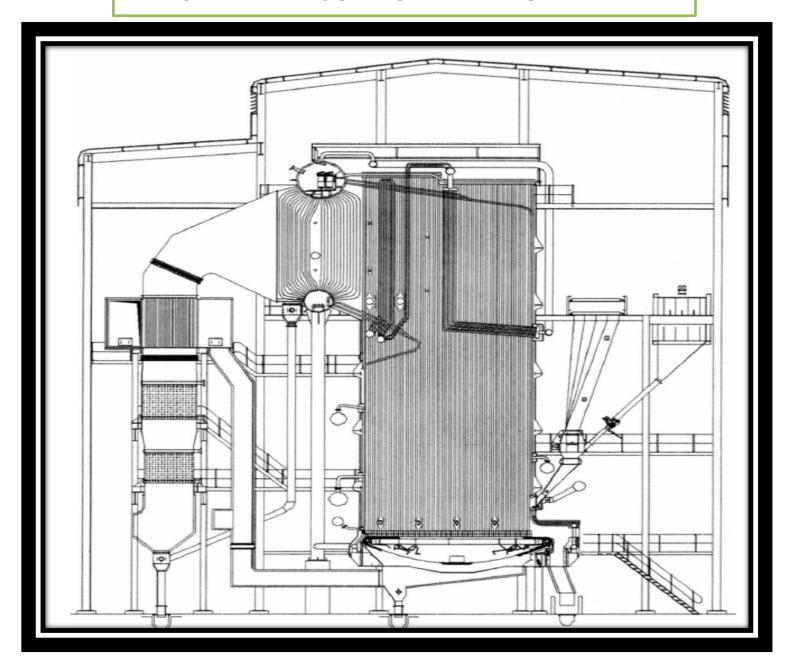

CALDEIRAS

- CALDEIRAS DE GRELHAS BASCULANTES: SEM DÚVIDA AS QUE TÊM MAIOR DIFICULDADE NA QUEIMA DESTE "NOVO BAGAÇO". VELOCIDADE DE GASES ELEVADA FAVORECENDO DESGASTE POR ABRASÃO.
- <u>CALDEIRAS COM GRELHA PIN- HOLE</u>: LIMITES NO TEOR DE CINZAS, PORÉM SEM MAIORES PROBLEMAS COM AS MISTURAS DE COMBUSTÍVEIS USADAS. PORÉM, TÊM O MESMO PROBLEMA DE VELOCIDADE DOS GASES.
- <u>CALDEIRAS COM GRELHA BASCULANTE:</u> COM MELHORES CONDIÇÕES PARA ADMINISTRAR MAIORES TEORES DE CINZAS NOS COMBUSTÍVEIS. IDEM VELOCIDADE DOS GASES.
- CALDEIRAS COM FORNALHA DE LEITO BORBULHANTE: A MAIS ADEQUADA PARA A COMBUSTÃO DE MISTURAS DE DIFERENTES PROPORÇÕES DE 'PALHA/BAGAÇO', PELAS CARACTERÍSTICAS BEM DIFERENTES DO SISTEMA DE QUEIMA EM LEITO FLUIDIZADO BORBULHANTE, "LFB".

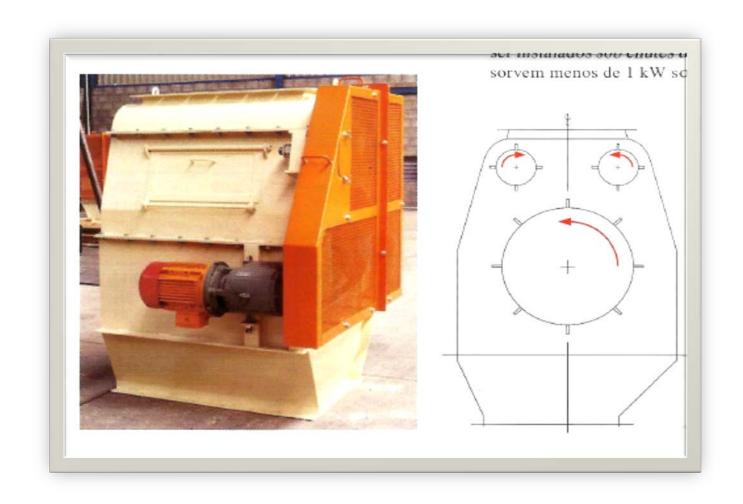

CALDEIRAS

- CALDEIRAS COM FORNALHA "LFB": A MAIS ADEQUADA PARA A
 COMBUSTÃO DE MISTURAS DE DIFERENTES PROPORÇÕES DE
 'PALHA/BAGAÇO'. SUPORTAM TEORES MAIS ELEVADOS DE CINZAS
 DEVIDO À BAIXA TEMPERATURA DE COMBUSTÃO E À REMOÇÃO DAS
 CINZAS POR DRENAGEM CONSTANTE DO LEITO.
- TÊM CONTROLE AUTOMATIZADO DO AR SECUNDÁRIO E RECIRCULAÇÃO DE GASES EXAUSTOS NO LEITO GARANTINDO A UNIFORMIDADE DA TEMPERATURA DA COMBUSTÃO QUE FICA ENTRE 840° E 860°C.
- AS CALDEIRAS DE LEITO FLUIDIZADO BORBULHANTE AO QUEIMAR EM TEMPERATURAS MAIS BAIXAS E MELHOR CONTROLADAS ENTREGAM OS GASES AO SUPERAQUECEDOR A UMA TEMPERATURA MENOR
- POSSIBILITAM UM ARRASTE DE MATERIAL PARTICULADO 75% MENOR
 QUE EM UMA CALDEIRA CONVENCIONAL, CONTRIBUINDO PARA REDUZIR
 OS PROBLEMAS DE CORROSÃO/ABRASÃO JÁ CITADOS DEVIDO À
 VELOCIDADE MENOR DOS GASES.

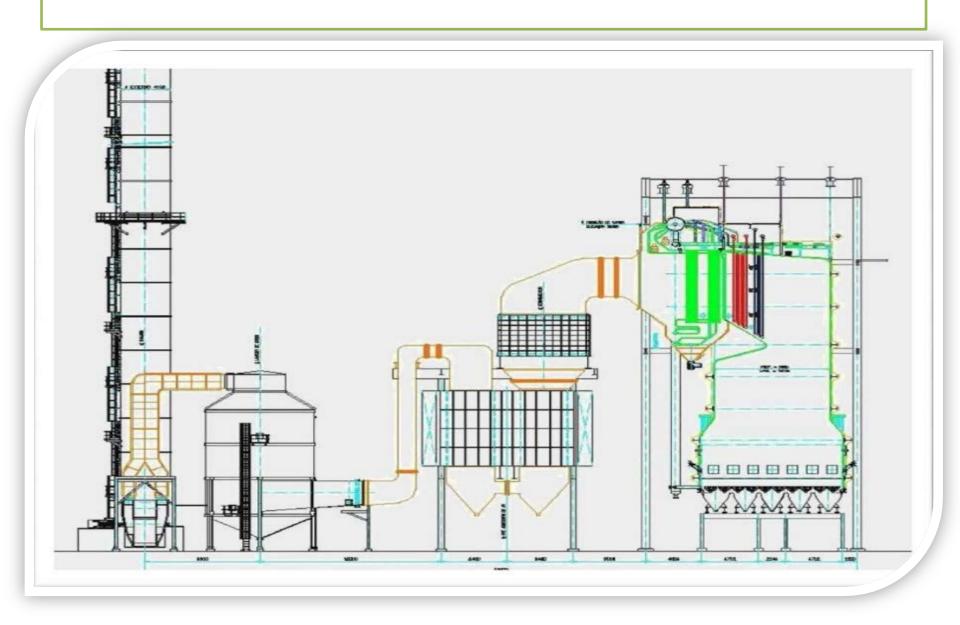
CALDEIRA COM GRELHA BASCULANTE



CALDEIRA COM GRELHA FIXA LIMPA A VAPOR – PIN HOLE

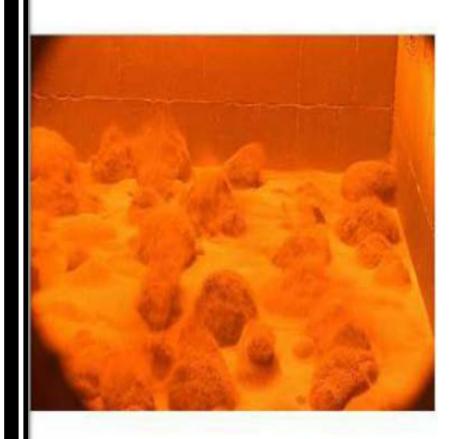


do Cabo, África do Sul)

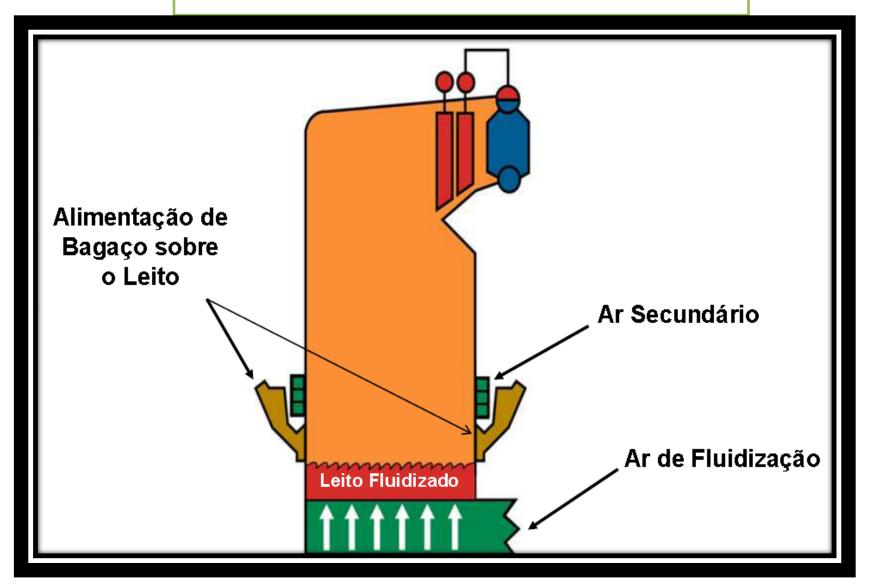

CALDEIRA COM GRELHA ROTATIVA

DOSADOR DE BAGAÇO

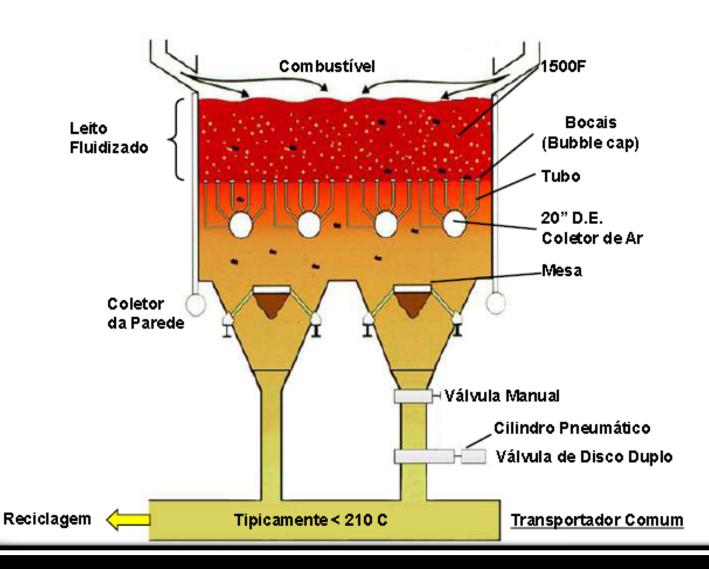
CALDEIRA-FORNALHA TIPO LEITO FLUIDIZADO BORBULHANTE


FORNALHA COM GRELHA

FORNALHA LEITO FLUIDIZADO



Caldeiras de Leito Fluidizado – Operação



CALDEIRA LEITO FLUIDIZADO CORTE ESQUEMÁTICO

Leito Fluidizado de Fundo Aberto

UTE - Usina São Martinho

Comparativo Técnico Leito Fluidizado x Grelha Pin Hole

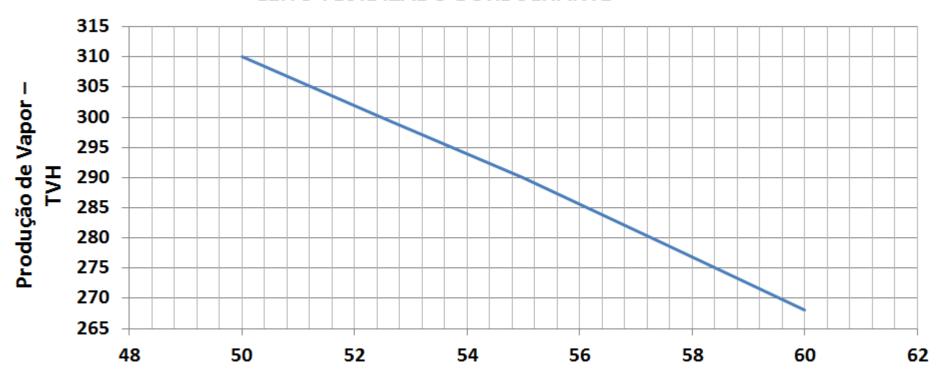
Parâmetro	LEITO FLUIDIZADO - BFB	GRELHA PIN HOLE
Flexibilidade de queima de biomassa	Alta	Limitada
Níveis de emissões atmosféricas	Atende padrões nacionais e internacionais	Atende padrões nacionais
Operação	Muito estável	Estável
Operação carga reduzida (% MCR)	Até 30	60
kg vapor /kg bag. @ 50 % um	2,27	2,11
Potência Consumida (MW)	4,3	3,0
Acréscimo de energia para venda (MWh/safra)	16.000	

UTE - Usina São Martinho

Comparativo Técnico Leito Fluidizado x Grelha Pin Hole

Parâmetro	LEITO FLUIDIZADO - BFB	GRELHA PIN HOLE
Umidade do combustível	12 a 65 %	48 a 53 %
Excesso de ar	20 a 30 %	35 a 50 %
Velocidade de gases na fornalha	6 a 7 m/s	11 a 12 m/s
Eficiência de combustão de resíduos de biomassa	99,5 %	94 a 97 %
Temperatura na região da queima	840°C a 870° C no leito	900° C a 1.100° C na fornalha
Rampa de Aquecimento	9 horas	8 horas
Resfriamento	20 horas	8 horas

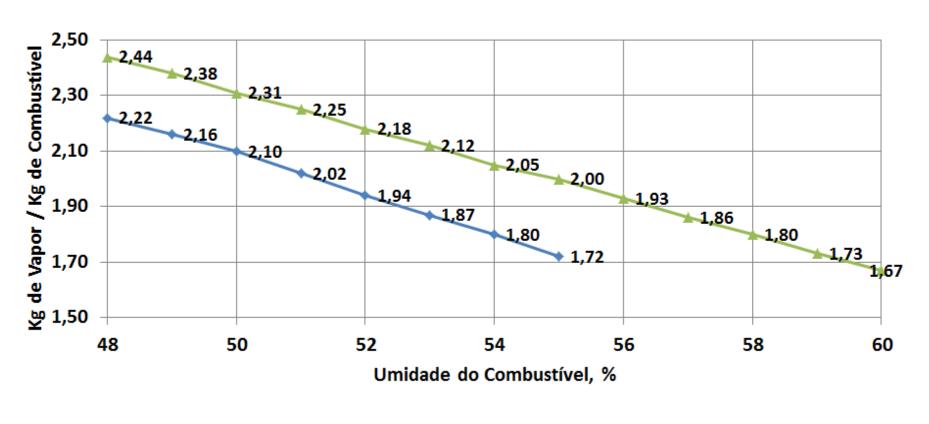
PERFORMANCE CALDEIRA LEITO FLUIDIZADO

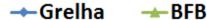


Flexibilidade de operação em função da Umidade do Bagaço

LEITO FLUIDIZADO BORBULHANTE

Umidade Combustível - %





Consumo específico em função da umidade do bagaço

CALDEIRA E CASA DE FORÇA - SÃO MARTINHO

OBRIGADO!!!

ERICSON MARINO