STAB – FISIOLOGIA E SUA APLICAÇÃO SOBRE FLORESCIMENTO, ISOPORIZAÇÃO DA CANA-DE-AÇÚCAR

FLOR: PROBLEMA OU OPORTUNIDADE?

Florescimento

• Para melhoramento de cana, característica desejável

CAMPANHA DE HIBRIDAÇÃO 2013

PLANEJAMENTO DE HIBRIDAÇÕES

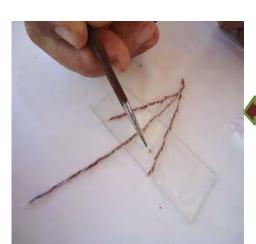
Hibridação

Ampliação da variabilidade

Complementariedade de atributos

Cruzamentos com parentais regionais/condições edafoclimáticas específicas.

COLETA DE FLORES


Sexagem dos Genótipos

Parque de Lanternas Bi Parentais

Lanterna para Policruzamentos

MELHORAMENTO CANA-DE-AÇÚCAR IAC

ETAPAS

PRIORIDADE 1

	DECISÕES	
IAC 91-1099	FLORESCE. EM PTIOS INVERNO NÃO FLORESCE. ALTO TCH E ADAPTAÇÃO A PTIO E COLHEITA MECÂNICA.	PR
IACSP95-5000	PLANTAR EM ÁREA CONVENCIONAL E COM VINHAÇA EM VIVEIROS SATÉLITES. Plantar áreas para colheita no outono.	PR
IACSP95-5094	Alta performance em ensaios. AMPLIAR COM VELOCIDADE EM VIVEIROS SATÉLITES. USAR EM AMBIENTES MÉDIOS A BONS.	PRI
IACSP97-4039	SUPER PRECOCE. MULTIPLICAR GEMA A GEMA. INTRODUZIR.	PRI
RB92579	PLANTAR EM AMBIENTES SUPERIORES E COLHER NO MEIO DA SAFRA. PLANTAR PARA VALIDAR. CUIDADOS: NÃO ATRASAR COLHEITA.	PRI
RB937570	SIMILAR A RB867515. PLANTAR PARA VALIDAR. INTRODUZIR OU REPURERAR INFORMAÇÕES.	PR
RB966928	Bom comportamento em plantio mecânico.	PR
RB965902	em validação. PLANTAR PARA VALIDAÇÃO.	PR
RB975952	RIQUEZA, HIPER-PRECOCE, BOA ADAPTAÇÃO A PTIO MECÂNICO.	PR

PRIORIDADE 1

	DECISÕES		
CTC2	ALTO TCH. MAT.NATURAL: JULHO-SETEMBRO. PTIO MECÂNICO GRUPO MÉDIO Proporcionar "caselas" médias para sua alocação. Cuidado com colheita tardia, por	PRIO 2	
CTC4	causa da ferrugem marrom. Ambiente: A-D	PRIO 1	
CTC15	COLHEITA EM MEIO E FINAL DE SAFRA EM AMB. B2 - D1.SENSÍVEL A BROCA. CUIDADO COM FAL.	PRIO 1	
CTC20	CT95-1425: PRECOCE, RICA E INDICADA PARA AMBIENTE A-C. AUMENTAR PARA OBSERVAÇÃO	PRIO 2	
CTC24	PLANTIO EM PEQUENAS ÁREAS PARA VALIDAÇÃO. CT98-1814	PRIO 2	
CTC9002		PRIO 2	
CTC9003		PRIO 2	
CV7231	BROTAÇÃO, TOLERÂNCIA A SECA, SOQUEIRA VIGOROSA.	PRIO 2	
CV7870	PRECOCIDADE, BROTAÇÃO, TOLERÂNCIA A SECA, SOQUEIRA VIGOROSA.	PRIO 2	

REGIÕES INDUTIVAS Regiões de estudos: Fases de Seleção e Experimentação do PROGRAMA CANA IAC **GENÓTIPOS MENOS APTOS AO FLORESCIMENTO: BOM PARA AGROINDÚSTRIA** DIFICULDADES PARA O **MELHORAMENTO** Região MATO GROSSO DO SUL Mapa de Localização PARANÁ SÃO PAULO OCEANO ATLANTICO

Gen 4 IAC

INFRA-STRUCTURE BEING IMPLEMENTED:

PHOTOPERIOD FACILITY, RIBEIRÃO PRETO, SP.

ACQUISITION: MAY/2010

BEGINING OF HIBRIDIZATION ACTIVITIES: 2011

Fatores que regulam a florescência:

- 1- Temperatura.
- 2- Umidade.
- 3- Fotoperíodo.
- 4- Radiação solar.
- 5- Altitude.

Temperaturas

 No período de indução do florescimento, as temperaturas noturnas são mais importantes que as diurnas. Em geral, 10 noites com temperatura abaixo de 18 °C, durante fotoperíodo indutivo, inibem completamente o florescimento.

Obs: não ocorrem estas temperaturas em fevereiro-março no Centro Sul do Brasil

Umidade

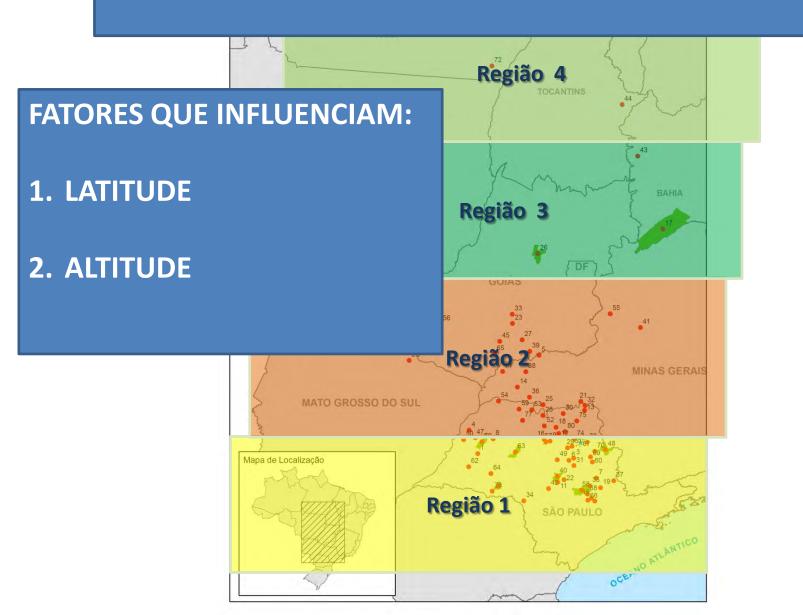
- a presença de umidade é responsável pelo acúmulo de energia para crescimento ou florescimento. O estresse hídrico pode ser uma forma de inibir o florescimento.
- A existência de um período seco na época da indução do florescimento, prejudica e pode até mesmo inibir o florescimento. Ex: 2014???

Já o **clima úmido e dias nublados** favorecem o **florescimento.** Ex: 2008, 2012

Fotoperíodo

 De maneira geral, a cana de açúcar necessita de um período de dias curtos (aproximadamente 12,5 h de claro) e, portanto, noites longas, para que ocorra a indução do meristema apical.

Obs1: condição sempre existente.


Obs2: mais de um período indutivo

Altitude

 Em regiões de maior altitude, maior será a indução.

Ex: Triângulo Mineiro, áreas próximas a Mantiqueira (> 800m)

LATITUDES: MAIS PRÓXIMA DO EQUADOR, SÃO MAIS INDUTIVAS

Florescimento

O florescimento da cana-de-açúcar tem sido encarado como prejudicial no processo de acúmulo de sacarose, pois é comumente aceito que a formação da flor drena considerável quantidade de sacarose.

Outro aspecto refere-se ao fenômeno do chochamento ou "isoporização", relacionado com o florescimento e maturação da cana, ocorre em algumas variedades e caracteriza-se pelo secamento do interior do colmo, a partir da parte superior.

ISOPORIZAÇÃO

A isoporização ou chochamento decorre da desidratação dos tecidos do colmo que, ao perderem água, adquirem, de forma gradativa, coloração branca, (CAPUTO et al., 2007). Este fenômeno se inicia nas partes internas do colmo, podendo evoluir do centro para a periferia. Ao longo do comprimento, essa evolução ocorre da ponta para a base.

Citado por SILVA NETO et al., 2011.

ISOPORIZAÇÃO

ISOPORIZAÇÃO: EFEITO SOBRE A DENSIDADE

ISOPORIZAÇÃO

A isoporização, pode acarretar em prejuízos na embebição, baixa densidade do bagaço, com fibras curtas, dificultando a "pega" da moenda, bagaço com dificuldade de queima, devido à uma maior embebição, caldo com baixa transparência, com bagacilho em suspensão (Marques et al., 2008). Além disso, há prejuízo na pesagem, com uma menor densidade de cana, e no pagamento pela qualidade da matéria prima em função do aumento do AR, fibra e redução do teor de sacarose (Peixoto et al., 1983). Citados por Tasso Júnior et al, 2009

EFEITO DO FLORESCIMENTO E ISOPORIZAÇÃO SOBRE PESO DO COLMO

SORDI & BRAGA, 1996

ESTUDO: O COMPORTAMENTO DE GENÓTIPOS DE CANA EM 11 LOCAIS DIFERENTES DURANTE OS ANOS 1993-94, DIANTE DO FLORESCIMENTO E ISOPORIZAÇÃO.

SORDI & BRAGA, 1996

FLORESCIMENTO

NOTA	FLOR (%)
1	0% colmos encartuchados e não flor
2	até 10% colmos encartuchados e não flor
3	até 50% colmos encartuchados e não flor
4	mais de 50% colmos encartuchados e não flor
5	até 20% colmos com flor
6	21 - 40% colmos com flor
7	41 - 60% colmos com flor
8	61 - 80% colmos com flor
9	81 - 100% colmos com flor

SORDI & BRAGA, 1996

GERAL

 a nota de florescimento e a % de isoporização apresentaram variação significativa de local para local

FLORESCIMENTO

- A nota de florescimento apresentou aumento significativo a partir de junho para c. planta e julho para c.soca
- O florescimento foi um pouco superior em c. planta do que na soca

ISOPORIZAÇÃO

- a cana planta apresentou menos isoporização que a soca
- A isoporização foi estabilizada a partir de julho (11 locais do Estado de S.Paulo)

SORDI & BRAGA, 1996

FLORESCIMENTO: CANA PLANTA (12 VARIEDADES)

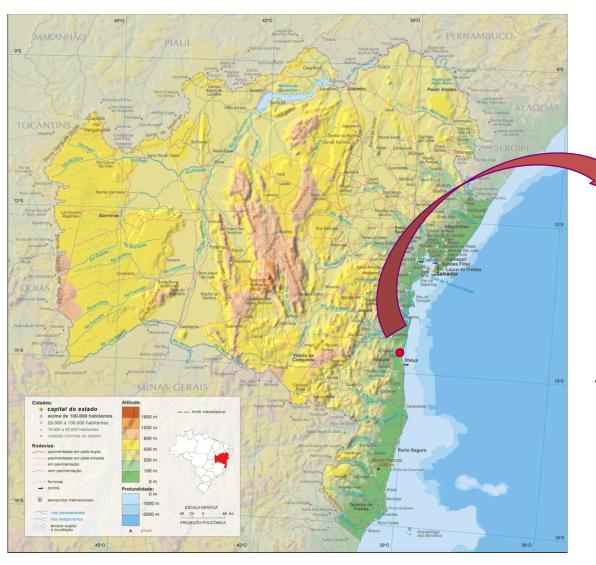
Y = 2,9116 - 0,1353 X

NOTA (X)	REDUÇÃO PESO DO COLMO
1	0,14
2	0,27
3	0,41
4	0,54
5	0,68
6	0,81
7	0,95
8	1,08
9	1,22

SORDI & BRAGA, 1996

FLORESCIMENTO: CANA SOCA (12 VARIEDADES)

$$Y = 1,8694 - 0,1854 X$$


NOTA (X)	REDUÇÃO PESO DO COLMO
1	0,19
2	0,37
3	0,56
4	0,74
5	0,93
6	1,11
7	1,30
8	1,48
9	1,67

 IAIA et al., 1985: observou que a redução de peso dos colmos florescidos a partir do meio da safra, se deu principalmente pela redução da densidade do colmo.

Estação de Hibridação – Serra Grande, Uruçuca, Bahia

Localização

Distrito de Serra Grande - BA Latitude 14°28'22.08" Longitude 39°04'35.56" Altitude 90 metros

VARIEDADE	INÍCIO	FINAL	10/abr	15/abr	20/abr	25/abr	30/abr	05/mai	10/mai	15/mai	20/mai	25/mai	30/mai	05/jun	10/jun	15/jun	20/jun
IAC873396	07/05	30/05		·													
IAC911099	17/04	18/05															
IACSP933046	24/05	18/06															
IACSP942094	11/05	11/06															
IACSP942101	NÃO	NÃO															
IACSP955000	07/05	15/06															
IACSP955094	22/05	30/05															
IACSP962042	07/05	30/05															
IACSP967569	14/05	06/06															
IACSP974039	15/05	10/06															
CTC2	24/05	08/06															
CTC4	07/05	03/06															
CTC7	NÃO	NÃO															
CTC9	03/05	25/05															
CTC11	24/05	31/05															
CTC14	NÃO	NÃO															
CTC15	06/05	29/05															
CTC17	06/05	21/05															
CTC20	14/05	29/05															
CTC22	07/05	26/05															
CTC24	NÃO	NÃO															
RB835054	NÃO	NÃO															
RB855156	03/05	14/05															
RB855453	07/05	22/05															
RB855536	NÃO	NÃO															
RB867515	03/05	25/05															
RB92579	NÃO	NÃO															
RB928064	NÃO	NÃO															
RB966928	06/05	21/05															
SP801816	NÃO	NÃO															
SP801842	22/05	14/06															
SP813250	24/05	31/05															
SP832847	03/05	18/05															
SP835073	NÃO	NÃO															
SP8642	NÃO	NÃO															

INCI v.32 n.12 Caracas dic. 2007

ACÚMULO DE SACAROSE, PRODUTIVIDADE E FLORESCIMENTO DE CANA-DE-AÇÚCAR SOB REGULADORES VEGETAIS

Marina Maitto Caputo, Marcelo de Almeida Silva, Edgar Gomes Ferreira de Beauclair e Glauber José de Castro Gava

TABELA I DESDOBRAMENTO DA ANÁLISE DE VARIÂNCIA DA PORCENTAGEM DE FLORESCIMENTO E DE "ISOPORIZAÇÃO", DOS GENÓTIPOS × REGULADORES VEGETAIS AOS 126 DIAS APÓS APLICAÇÃO

Genótipos	Manejo	Florescimento	"Isoporização"
	Sulfometuron-metil	0,08 b	% 9,15 c
IAC87-3396	Etefon	0,00 b	19,75 b
11 1007 2020	Testemunha	15,02 a	31,75 a
	Sulfometuron-metil	0,00 a	0,00 b
IAC87-3410	Etefon	0,00 a	0,00 b
	Testemunha	0,00 a	24,35 a
	Sulfometuron-metil	18,25 b	20,83 b
IAC89-3124	Etefon	17,57 b	13,90 c
	Testemunha	29,12 a	27,15 a
	Sulfometuron-metil	10,00 b	7,95 b
IAC91-2195	Etefon	11,30 b	9,18 b
	Testemunha	31,00 a	19,20 a
	Sulfometuron-metil	0,00 a	21,45 a
IAC91-5155	Etefon	0,00 a	9,70 b
	Testemunha	0,00 a	19,45 a
	Sulfometuron-metil	0,00 a	13,25 ab
PO88-62	Etefon	0,00 a	9,25 b
	Testemunha	0,00 a	17,35 a
	Sulfometuron-metil	0,17 a	0,00 b
SP80-1842	Etefon	0,00 a	0,00 b
	Testemunha	20,87 b	10,48 a
DMS		3,04	4,98
CV parcela (. *	6,30	18,07
CV sub parce	ela (%)	15,01	19,39

Médias seguidas de letra distintas, na coluna e dentro do genótipo, diferem estatisticamente pelo teste de Tukey ($P \le 0.05$).

^{*}Análise estatística realizada com dados transformados pela expressão matemática arcseno. $\sqrt{(x+0.5)/100}$

Tabela 2 – Percentagem de colmos sem indução, induzidos, florescidos, intensidade de isoporização e diâmetro de isoporização <25%, >25%-<50% e >50%, em cana-planta

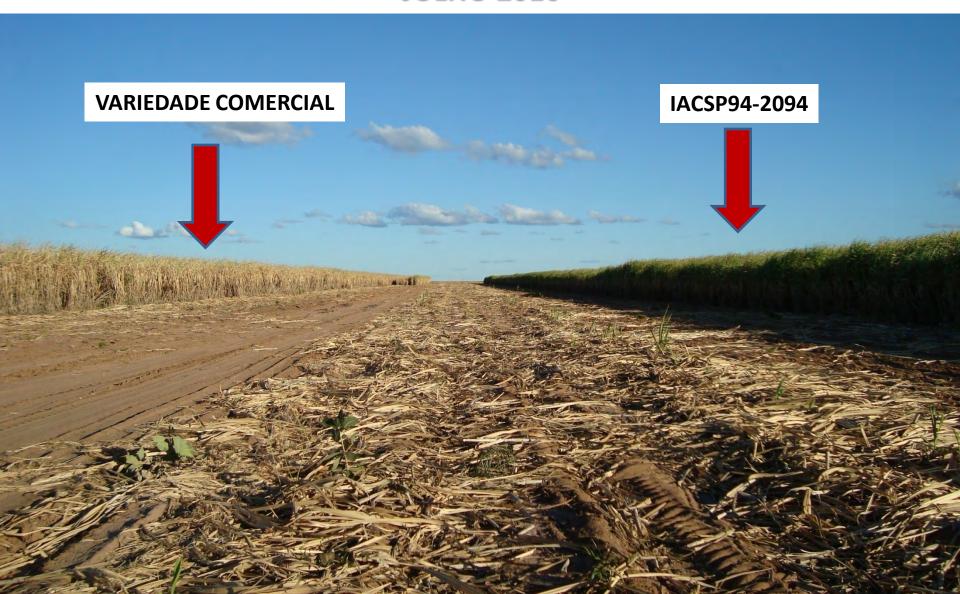
Cultivar	Sem indução	Induzidos	Emissão	I.I.	Isop.<25%	Isop.>25-<50%	Isop.>50%
Towns and	0	·	%			— Diâmetro —	*
IACSP93-3046	16,67 b	83,33 a	0,00 c	9,19 e	93,02 a	6,98 e	0,00 d
SP80-1842	0,00 c	26,67 d	73,33 a	22,37 b	63,65 d	28,83 b	7,52 c
SP91-1049	13,33 bc	80,00 ab	6,67 c	17,67 c	59,92 e	22,51 c	17,57 b
CTC 7	26,67 ab	73,33 abc	0,00 c	11,39 d	88,41 b	11,59 d	0,00 d
CTC 16	33,33 a	66,67 bc	0,00 c	5,51 f	76,33 c	23,67 c	0,00 d
CTC 9	13,33 bc	63,33 c	23,33 b	27,71 a	37,84 f	39,17 a	22,99 a
Média geral	17,22	65,55	17,22	15,63	69,86	22,12	8,01
Teste F							
Tratamentos	14,60**	45,44**	150,73**	1256,24**	803,41**	178,67**	157,89**
CV (%)	30,6	8,0	23,7	2,6	1,8	6,8	17,3

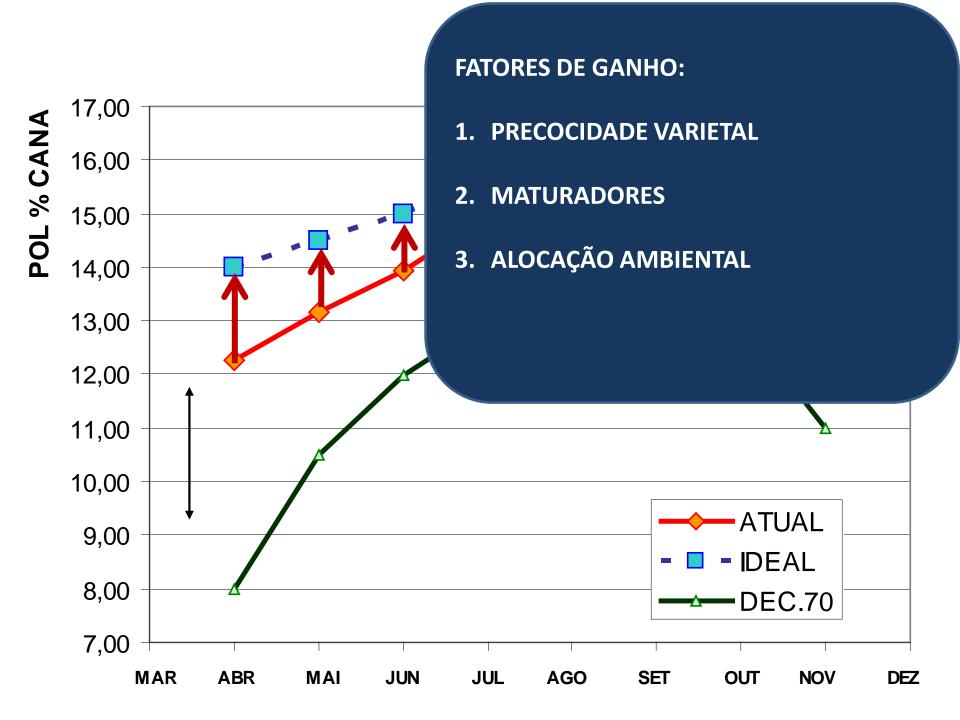
Médias seguidas de mesma letra não diferem entre si pelo teste Tukey a 5% de probabilidade. ** e NS - Significativo ao nível de 1 % de probabilidade e não significativo, respectivamente. I.I. = Intensidade de isoporização. Isop. = Isoporização.

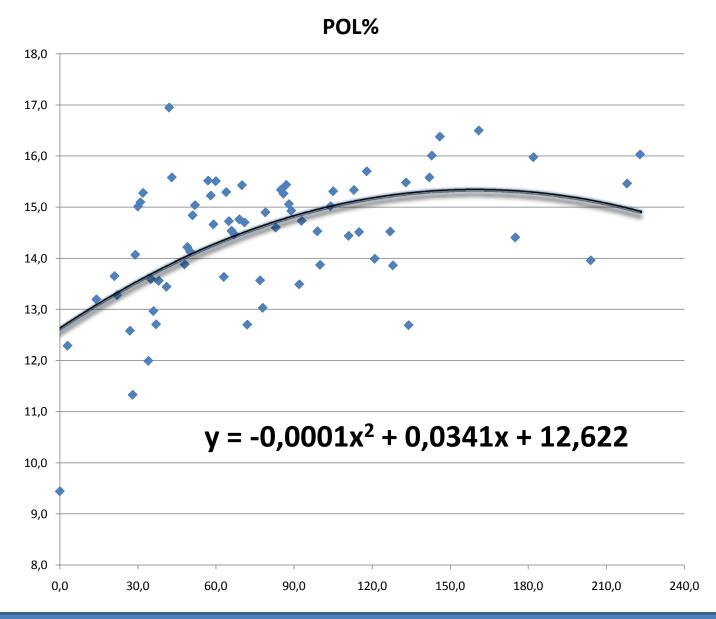
TASSO JÚNIOR et al., 2009

Tabela 1. Porcentagem¹ de colmos sem indução (s/ ind.), induzidos (induz.), florescidos (floresc.), Intensidade de Isoporização (I.I.) e diâmetro de isoporização menor 25 %, entre 25 e 50 % e maior 50 % em seis variedades de cana-de-açúcar.

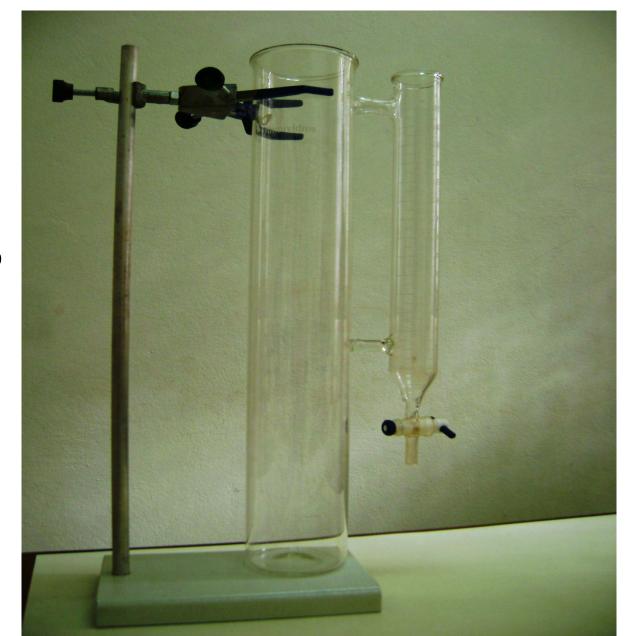
	s/ ind,	induz.	floresc.	I.I.	Ø Isop. <25%	Ø Isop. >25 e <50%	Ø Isop >50%
Variedades							
IAC91-1099	16,67 bc	70,00 a	13,33 cd	14,32 d	82,28 b	12,75 d	4,98 c
IAC94-4004	10,00 cd	70,00 a	20,00 c	20,29 bc	80,65 b	19,35 c	0,00 d
IAC95-5000	23,33 b	23,33 b	53,33 b	18,36 c	67,59 c	32,41 b	0,00 d
SP81-3250	0,00 d	6,67 c	93,33 a	40,78 a	36,99 d	37,97 a	25,04 b
CTC 15	0,00 d	0,00 c	100,00 a	22,26 b	29,11 e	38,67 a	32,22 a
RB855536	36,67 a	63,33 a	0,00 d	8,06 e	92,44 a	7,56 d	0,00 d
Teste F							
Tratamentos	36,53**	95,87**	163,20**	305,14**	533,14**	131,46**	287,56**
Média Geral	14,44	38,39	4,67	20,73	64,84	24,78	10,37
Desvio Padrão	4,08	5,77	5,77	1,10	1,95	2,02	1,48
DMS (5%)	11,20	15,83	15,83	3,01	5,34	5,54	4,05
CV	28,26	14,85	12,37	5,29	3,00	8,16	14,23


(**) Significativo ao nível de 1% de probabilidade, pelo teste F; \(^1\) Números seguidos pela mesma letra não diferem significamente entre si a 5 % de probabilidade pelo Teste de Tukey; s/ ind. - sem indução; induz. - induzidos; floresc. - florescidos; I.I. - Intensidade de Isoporização; Ø Isop. <25% - diâmetro de isoporização menor 25 %; Ø Isop. >25 e <50% - diâmetro de isoporização entre 25 e 50 %; Ø Isop. >50% - diâmetro de isoporização maior 50 %.


ENSAIOS EM GOIÁS



OESTE DA BAHIA


LATOSSOLO 1 (Ambiente E1)
JULHO 2010

INÍCIO DE SAFRA: 08 DE ABRIL DE 2008

Densimetro Graduado

DENSIDADE

ENSAIO: Associativo

BLOCO: Sequeiro

DATA DE AMOSTRAGEM: 03/09/2010

Parcela	Variedade	POSIÇÃO DO COLMO	PESO (grs)	VOLUME(ml)	Densidade	Densidade média
1	IACSP977065	ÁPICE	60	60	1,00	
1	IACSP977065	MÉDIO	240	220	1,09	1,05
1	IACSP977065	BASE	190	178	1,07	
4	SP791011	ÁPICE	65	70	0,93	
4	SP791011	MÉDIO	125	122	1,02	1,00
4	SP791011	BASE	75	72	1,04	
5	NA5679	ÁPICE	45	52	0,87	
5	NA5679	MÉDIO	125	122	1,02	0,98
5	NA5679	BASE	115	108	1,06	
7	IAC873396	ÁPICE	20	22	0,91	
7	IAC873396	MÉDIO	100	74	1,35	1,11
7	IAC873396	BASE	80	74	1,08	
32	SP832847	ÁPICE	45	38	1,18	
32	SP832847	MÉDIO	140	132	1,06	1,12
32	SP832847	BASE	90	80	1,13	

Valores de densidade de colmo (massa/volume) entre os meses de maio a julho/98 Região de Ribeirão Preto

VARIEDADE	DENSIDADE maio	DENSIDADE junho	DENSIDADE julho	Observações de maio p/ julho
IAC82-2045	1,032	1,098	1,100	Î 6,6%
IAC82-3092	1,013	1,116	1,105	Î 9,1%
IAC83-4157	1,019	1,071	1,050	<u>î</u> 3,0%
IAC86-2001	1,076	0,948	1,104	Î 2,6%
IAC86-2210	1,070	1,095	1,078	=
IAC86-2480	1,074	1,079	1,091	Î 1,6%
IAC87-2337	0,962	1,015	0,943	↓ 2,0%
IAC87-2422	1,034	1,067	1,118	Î 8,2%
IAC87-3396	1,112	1,087	1,105	=
IAC89-2121	1,146	1,054	1,004	↓ 8,8%
IAC89-2135	1,107	1,070	1,100	=
RB72454	1,094	1,093	1,102	=
RB806043	1,020	1,092	1,082	Î 6,0%
RB835486	1,070	1,064	1,097	Î 2,5%
RB845257	1,066	1,069	1,108	1 3,9%
RB855113	1,100	1,095	1,090	=
SP80-1836	1,087	1,085	1,097	=
RB855453	1,028	1,073	1,064	1 3,5%
RB855536	1,042	1,094	1,144	11,3%
SP79-2233	1,057	1,098	1,070	=
SP80-1520	1,052	1,077	1,063	=
SP80-1842	1,058	1,107	1,093	Î 3,3%
SP81-3250	1,029	1,046	1,089	Î 5,8%
SP81-3280	1,071	1,102	1,102	Î 2,9%

VARIEDADES	FLOR	Ñ FLOR	REDUÇÃO PELA FLOR	Ñ APLICADO	APLICADO	GANHO COM INIBIDOR
RB867515	-	-	-	1,028	1,138	10,7%
	-	-	-	1,056	1,14	8,0%
	-	-	-	1,079	1,174	8,8%
RB867515	1,094	1,15	4,9%	1,122	1,136	1,2%
	-	-	-	1,162	1,249	7,5%
	-	-	-	1,143	1,244	8,8%
RB867515	0,977	1,08	9,5%	-	-	-
RB867515	1,078	1,103	2,3%	-	-	-
IAC87-3396	1,081	1,139	5,1%	-	-	-
IAC91-1099	1,181	1,216	2,9%	-	-	-
SP81-3250	0,981	1,02	3,8%	-	-	-
VALORES MÉDIOS			4,7%			7,5%

FONTE: GRUPO GOIASA & IAC, 2011

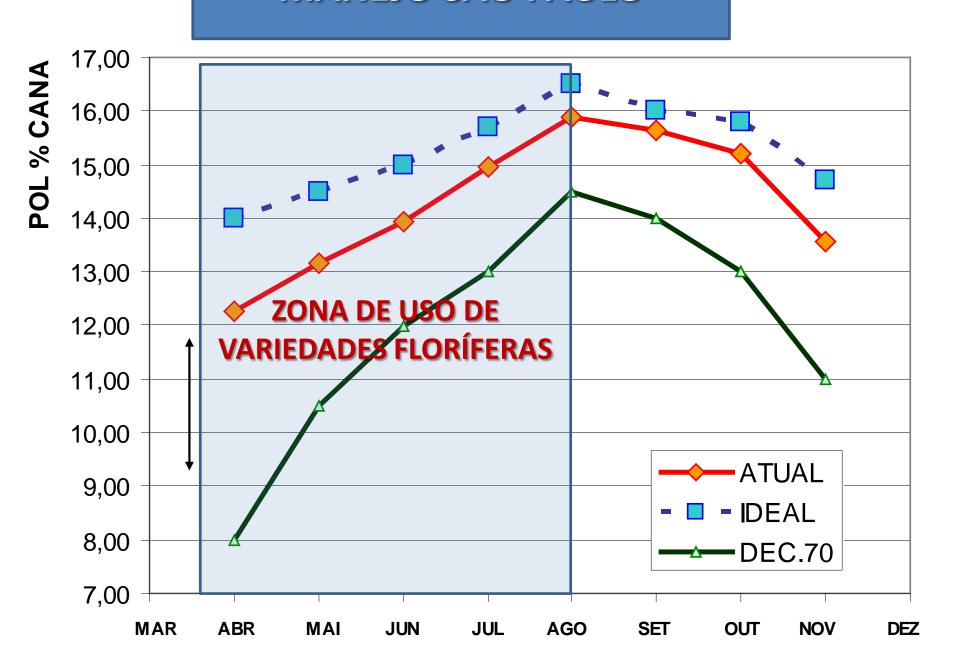
USINA JALLES MACHADO S.A DATA AMOSTRAGEM: AGOSTO DE 2008

	DENSIDADE MÉDIA (g/ml)		INDICE DE ISO	PORIZAÇÃO (%)	
VARIEDADE	COM FLOR	SEM FLOR	COM FLOR	SEM FLOR	REDUÇÃO DE DENSIDADE EM CANAS FLORIDAS
IAC91-1099	0,84	1,03	22%	3%	18,40%
IACSP94-2101		1,02		5%	
IACSP94-2094	0,88	0,95	13%	9%	7,36%
IACSP94-4004		1,01		3%	
CTC2	0,83	1	23%	6%	17%
CTC4	0,87		18%		18%
СТС7		1,04		5%	
CTC8	0,83	1,02	21%	3%	18,60%
CTC15	0,91	1,05	17%	2%	13,30%
RB925345	0,89		16%		16%
RB935744		1,03		3%	

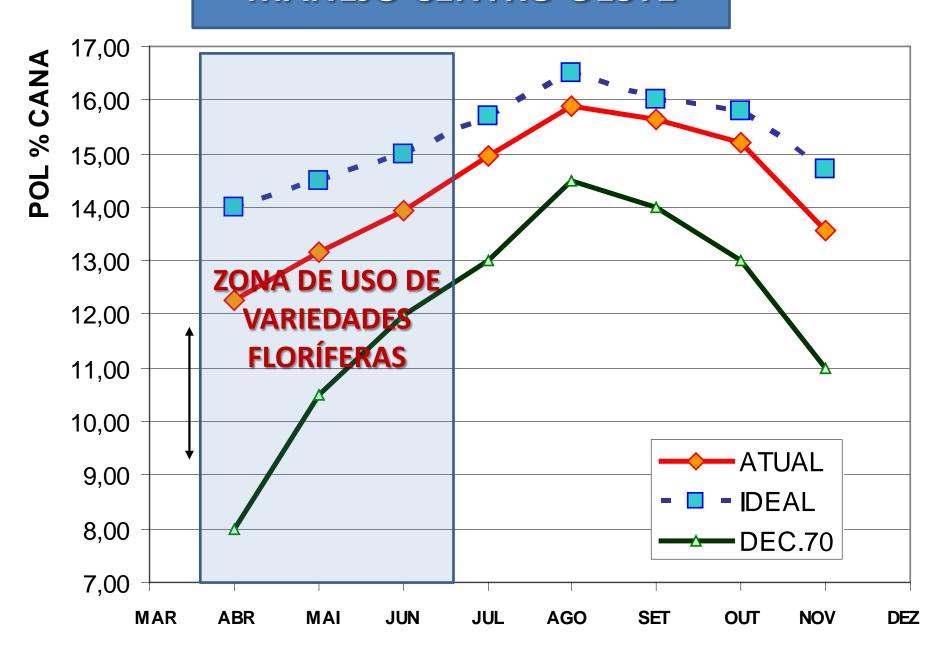
USINA JALLES MACHADO S.A

AMOSTRAGEM: AGOSTO DE 2009

	DENSIDADE	MÉDIA (g/ml)	INDICE DE ISOF	PORIZAÇÃO (%)
VARIEDADE	COM FLOR	SEM FLOR	COM FLOR	SEM FLOR
IACSP976682		1,14		4%
IACSP951218	1,23	1,26	15%	10%
IACSP962042		1,22		3%
IACSP963060		1,12		6%
IACSP955000	1,01	1,03	5%	5%


	FLORESCIMENTO			
Variedades	ALTO	MÉDIO	BAIXO	
SP80-1816			X	
SP80-1842		X		
SP80-3280			X	
SP81-3250	X	X		
SP83-2847	X			
SP83-5073			X	
SP84-1431		X		
SP86-42			x	
SP86-155		X		
SP91-1049		X		

	FLORESCIMENTO		
Variedades	ALTO	MÉDIO	BAIXO
IAC87-3396		X	
IAC91-1099	X		
IACSP93-6006			X
IACSP93-3046			X
IACSP94-2094			X
IACSP94-2101			X
IACSP95-3028		X	
IACSP95-5000		X	
IACSP95-5094			X
IACSP96-3060			X


	FLORESCIMENTO		
Variedades	ALTO	MÉDIO	BAIXO
CTC2	X	X	
CTC4		X	
CTC6		X	x
CTC7	X	X	
CTC8	x		
CTC9	x	x	
CTC11			X
CTC14			X
CTC15	x	x	
CTC16		X	
CTC 17			x
CTC 18	X		
CTC20		X	

	FLOF	RESCIME	ENTO
Variedades	ALTO	MÉDIO	BAIXO
RB72454			X
RB835054			X
RB845210		X	x
RB855156		X	X
RB855453	X	X	
RB855536			X
RB867515		x	
RB92579			X
RB925211			X
RB928064			X
RB935744		x	X
RB966928	x		

MANEJO SÃO PAULO

MANEJO CENTRO OESTE

Que relação há entre a MATRIZ DE AMBIENTES e a maturação???

Solos	Safra outono 01/Abril a 21/Jun	Safra Inverno 22/Jun a 21/Set	Safra primavera 22/Set a 30/Nov
Favoráveis	1	2	5
Médios	3	4	8
Desfavoráveis	6	7	9

PLANTA

F I A Ó T T O I R C E O S S

MANEJO VARIETAL

C L I M A

SOLOS

Introdução e conceitos

- ➤ "Matriz de ambientes": "caselas ambientais" definidas a partir da intersecção dos níveis dos fatores ambientes e épocas.
- Esta caracterização permite estabelecer estratégias de alocação varietal quando se conhece o perfil de resposta das cultivares aos ambientes.

Fatores "ÉPOCA x AMBIENTES"

Tabela 2. Déficit hídrico estratificado de algumas regiões canavieiras ao longo da safra em função do ambiente de produção e dos períodos dentro da safra (Landell & Scarpari, 2008).

Ribeirão Preto (em mm)

	SAFRA		
Ambientes	Outono	Inverno	Primavera
Superiores	21	147	489
Médios	29	174	524
Inferiores	43	203	554

Assis (em mm)

`	,		
	SAFRA		
Ambientes	Outono	Inverno	Primavera
Superiores	82	130	327
Médios	103	156	360
Inferiores	128	184	390

Jaú (em mm)

	SAFRA		
Ambientes	Outono	Inverno	Primavera
Superiores	91	247	539
Médios	112	279	574
Inferiores	138	309	604

Mococa (em mm)

•			
		SAFRA	
Ambientes	Outono	Inverno	Primavera
Superiores	12	90	477
Médios	17	112	512
Inferiores	26	138	542

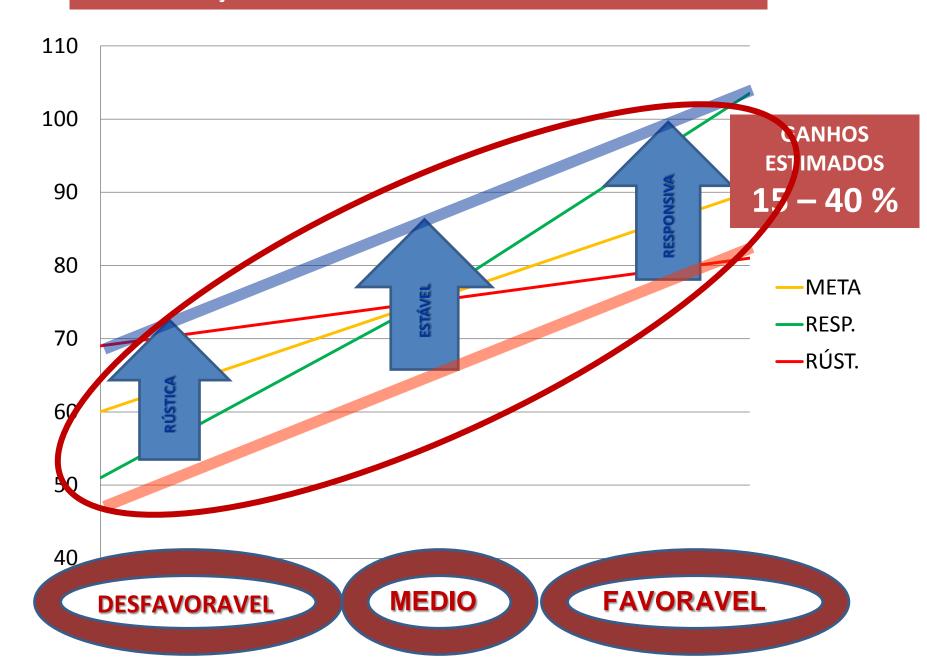
Piracicaba (em mm)

Thateasa (chimin)			
	SAFRA		
Ambientes	Outono	Inverno	Primavera
Superiores	73	152	427
Médios	92	180	462
Inferiores	116	209	492

Pindorama (em mm)

•			
	SAFRA		
Ambientes	Outono	Inverno	Primavera
Superiores	70	99	502
Médios	92	125	536
Inferiores	124	161	567

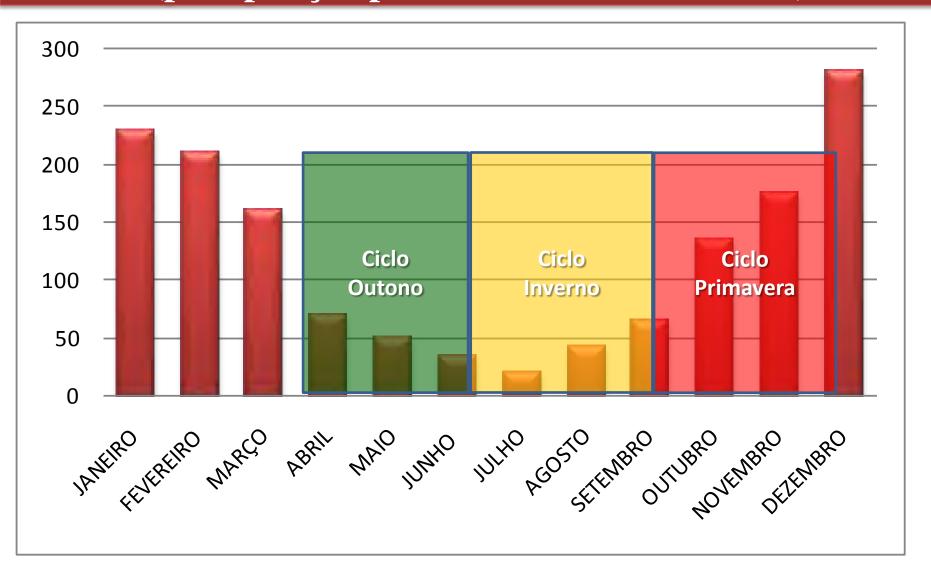
Índice ambiental e estabilidade para TCH/dia


variedades estáveis: É uma variedade que responde a uma condição mais favorável de cultivo, mas que também tem bom desempenho em condições desfavoráveis de produção.

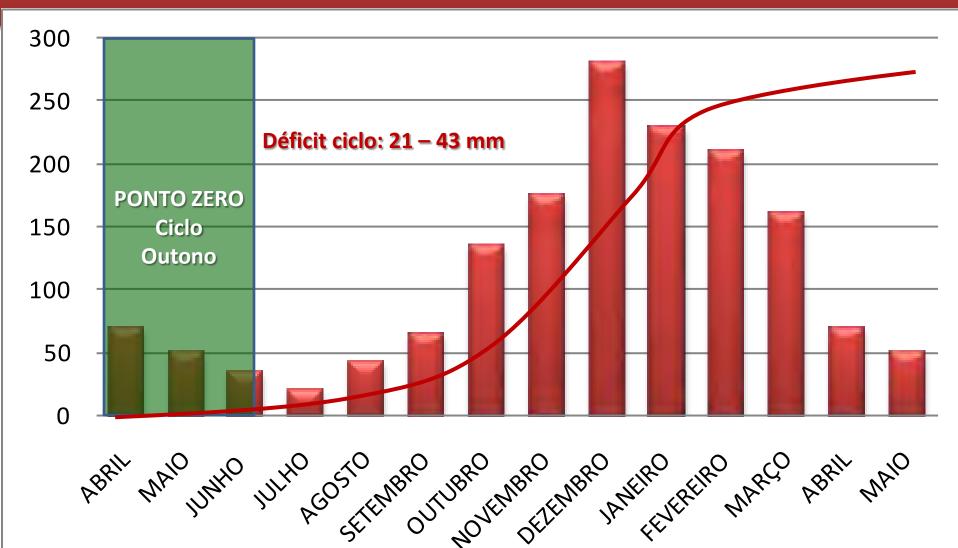
variedades responsivas: É aquela que tem grande resposta a uma condição favorável de cultivo, mas que não se adapta a ambientes mais restritivos.

variedades rústicas: É aquela que se adapta a ambientes mais restritivos, mas não apresenta boa resposta a uma condição favorável de cultivo.

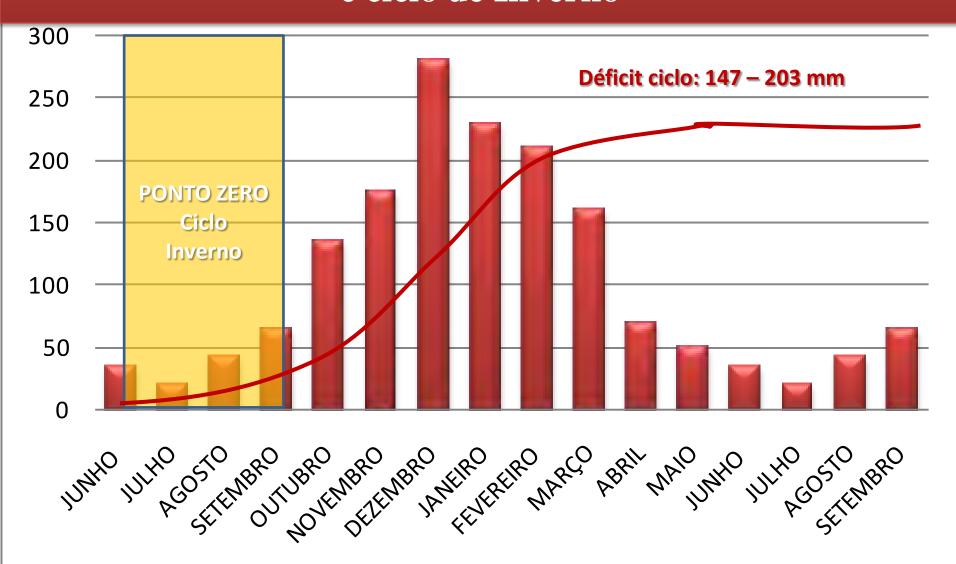
ALOCAÇÃO CONFORME PERFIL DE RESPOSTA VARIETAL


☐ SAFRA DO CENTRO SUL

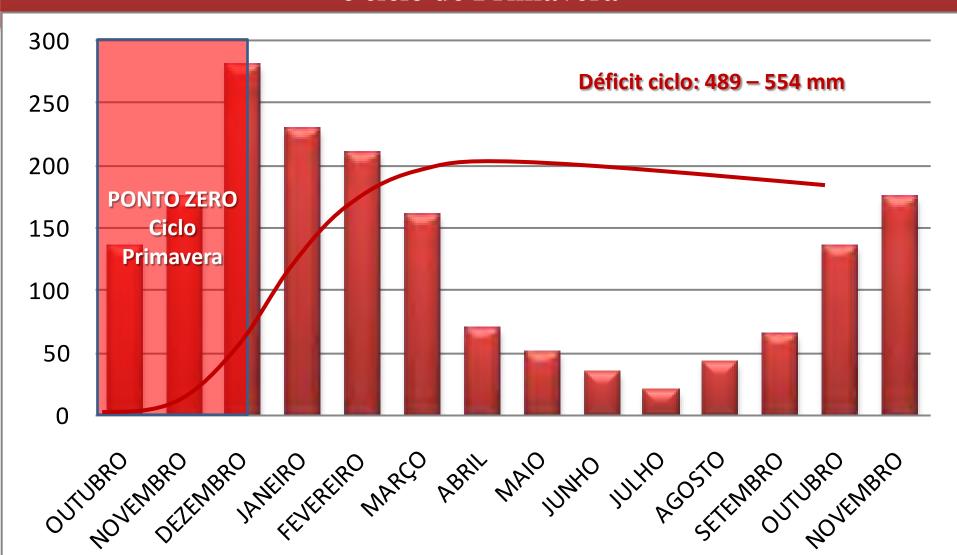
- INÍCIO: OUTONO (01 de ABRIL 21 de JUNHO)
- MEIO: INVERNO (22 de JUNHO 21 de SETEMBRO)
- FINAL: PRIMAVERA (22 de SETEMBRO 21 de DEZEMBRO)


Fator "ÉPOCA"

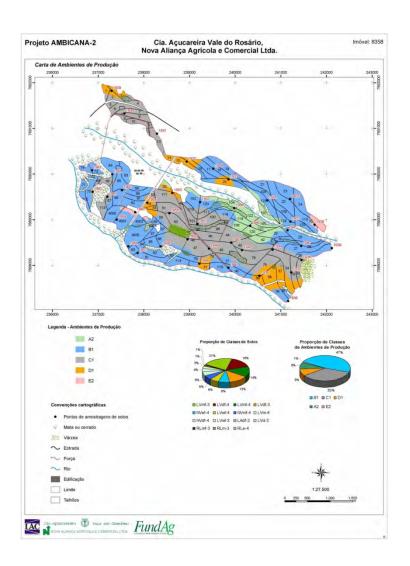
Perfil climático da região Centro-Sul do Brasil (precipitação pluviométrica média – mm)



Perfil climático da região Centro-Sul do Brasil e ciclo do Outono

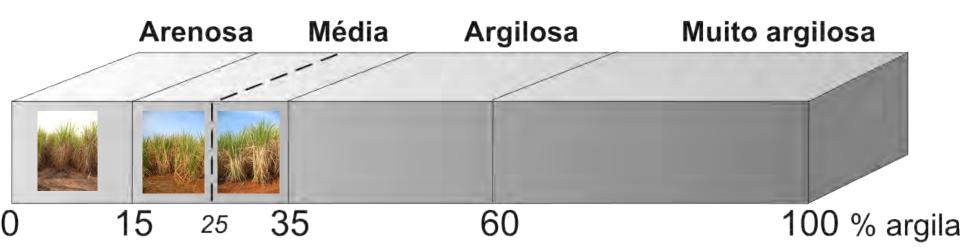


Perfil climático da região Centro-Sul do Brasil e ciclo de Inverno



Perfil climático da região Centro-Sul do Brasil e ciclo de Primavera

DIVERSIDADE DE TIPOS DE SOLOS

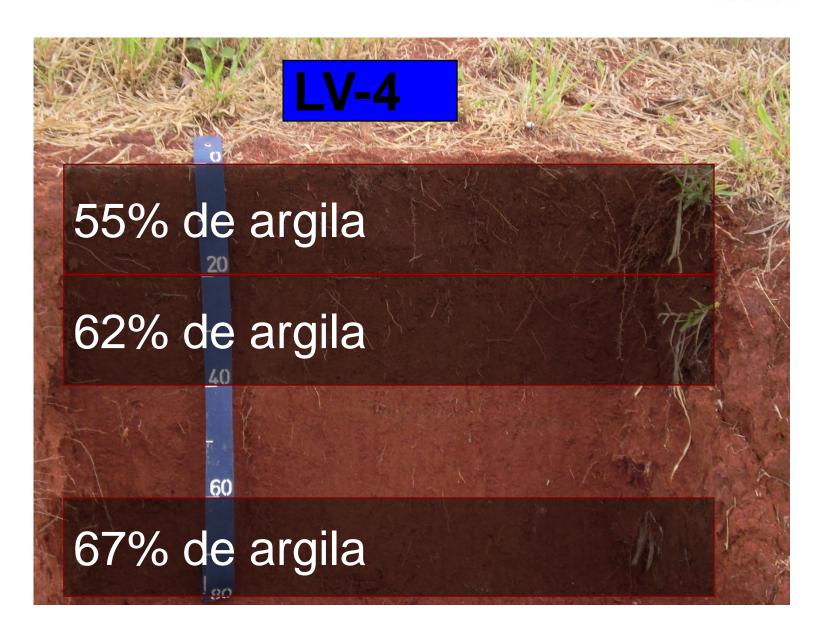


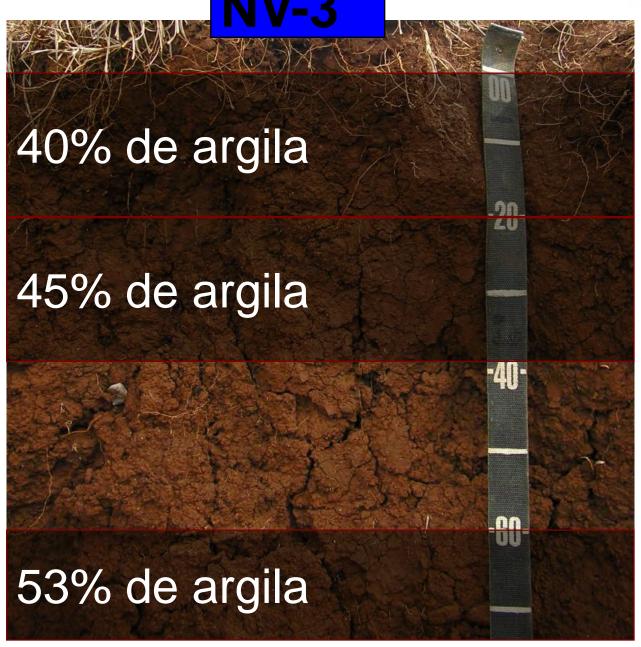
Andriania	Produtividades	Atritutos dos solos	Simboles des soles		
Anthewes	TCH,	ABBAROS HOS SINOS	EMBRAPA (1999), PRADO (2004)		
Al	> 100	ADA, e, er, m, CTC média/alta	$\begin{array}{l} PVAe^2, PVe^2, LVet, LVe, LVAe, CXe, NVef, NVe, MT^*, MX^*\\ GMe, GXe, GMm, GXm \end{array}$		
A2	96 - 100	ADM, e, el, CTC média/ella	PVAe3 PVe3, PAe3, LVer, LVe, LVAe, CXe, NVer, NVe		
Bi	92 - 96	ADA, mynf, CTC media/alta ADM, m1, m, ms, CTC media/alta ADB, e1, e, CTC media/alta	PVAm; PVm³, PAm³, LVmf, LVm, LVAm, LAm, CXm, NVmf, NVm, PVAms* LVef, LVe, LVAe, LAe, NVef, NVe, PVAe; P, PVe³, PAe; .○		
B2	88 - 92	ADM, m,m1, CTC média/bailes ADA, a, CTC média/sta	P.VAm.©, P.Vin.©, P.Vim.S, L.Vim., L.VAm., L.VAm., L.A.m., C.Vim. CMa, OXa		
C1	84 - 88	ADM, d, CTC médiateita ADM, ma, CTC médiateita ADB, d, df, CTC médiateita	PVAuja, PVda, PAda LVamė, LAmė LVd, LVd, LVAd, LAd		
C2	80 - 84	ADB, e, CTC média/baxa ADMB, et, CTC média/bita	LVe, LVAo, LAe LVef		
D1	76 - 80	ADB., v _{ij} W _i , CTC media/MEs ADM, a, CTC media/MEs	LVW,LVW,LVAW,LAW PVAo*,PVo*,PAo*		
D2	72 - 76	ADB , ma, CTC média/Mila ADB , e, CTC alta , A chernozemico	LVino, LVino, Lima RLe		
ш.	68 - 72		VAme*, PVma*, PAma*		
E2	< 68		Vw, LVw, LVlw, LAw VAars, P.Vars, P.Vaars, P.Aars, RGB, RGG		

ADA ique disposível afre, ADA água disposível média, ADE água disposível batos, ADME água disposível multo batos a Virulando Vermeiño, LVA Latossolo Avemenho, LVA Latossolo Avemenho, LVA Latossolo Avemenho, LVA Latossolo Avemenho, PVA Agrismolo Vermeiño, PVA Agrismolo Avemenho, PVA Agrismolo A

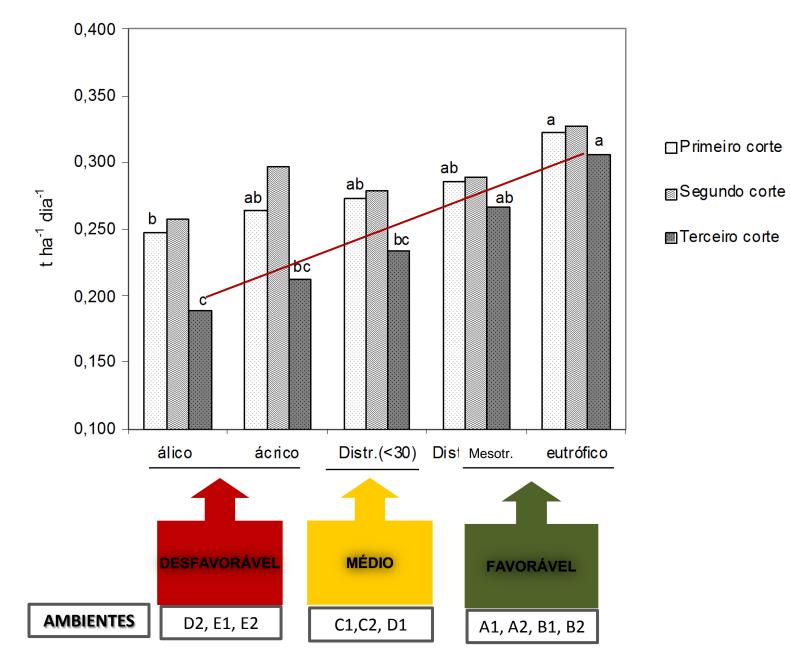
Textura







CANA NO ARGISSOLO X LATOSSOLO



CANA NO ARGISSOLO (PV-3)

CANA NO LATOSSOLO (LV-1)

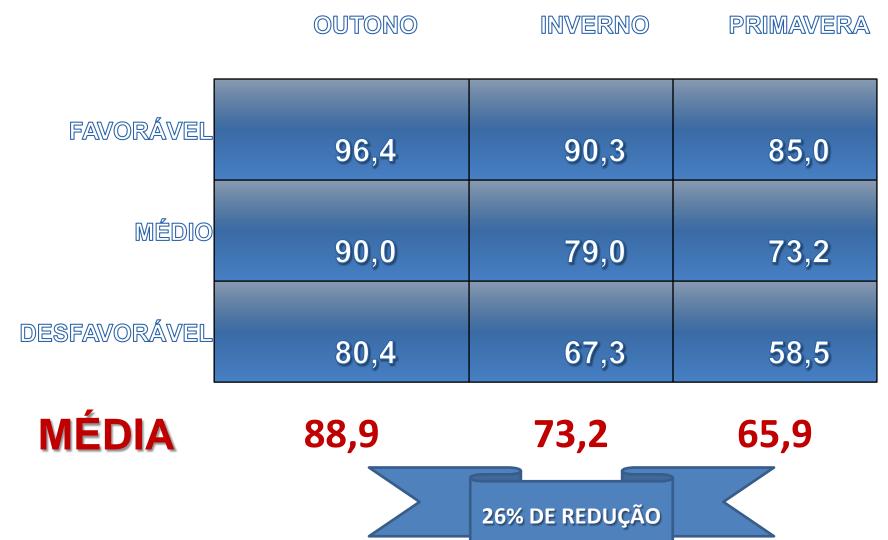
Landell et al.,2003

MATRIZ DE AMBIENTES

Tabela 1. Matriz de ambientes de produção, com nove caselas dadas pelas combinações de ambientes/solos e épocas de colheita.

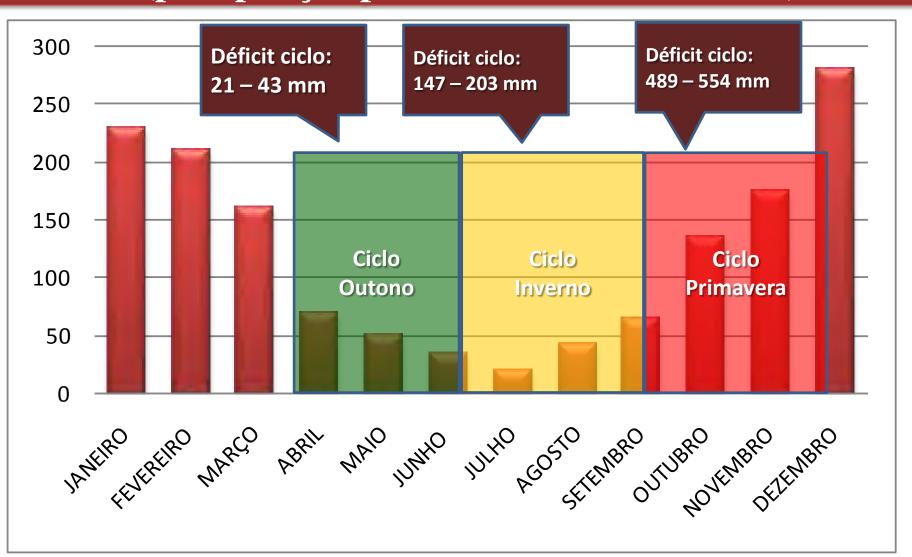
Solos	Safra outono 01/Abril a 21/Jun	Safra Inverno 22/Jun a 21/Set	Safra primavera 22/Set a 30/Nov	
Favoráveis	1	2	5	
Médios	3	4	8	
Desfavoráveis	6	7	9	

Solos	Safra outono 01/Abril a 21/Jun	Safra Inverno 22/Jun a 21/Set	Safra primavera 22/Set a 30/Nov
Favoráveis		2	5
Médios	3	4	8
Desfavoráveis	6	7	9

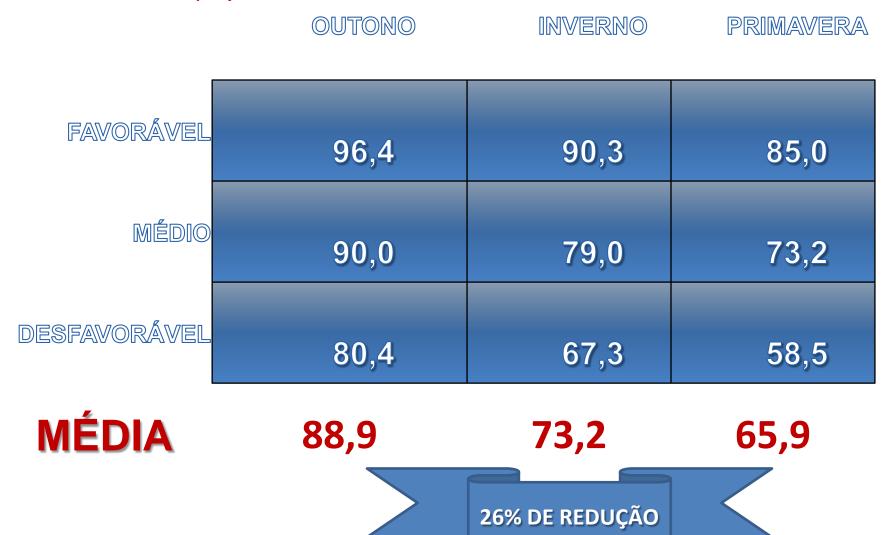

DESLOCAR HORIZONTAL

-ANTECIPAÇÃO SAFRA

MATRIZ DE UMA UNIDADE DO CERRADO AGOSTO/2009 (TCH5 média de 5 anos de safra)



MÉDIA MATRIZ: 80,0 t/ha


Perfil climático da região Centro-Sul do Brasil (precipitação pluviométrica média – mm)

MATRIZ DE UMA UNIDADE DO CERRADO AGOSTO/2009 (TCH5 média de 5 anos de safra)

MÉDIA MATRIZ: 80,0 t/ha

GANHOS EM MATURAÇÃO COM ALOCAÇÃO EM AMBIENTES RESTRITIVOS

	OUTONO	INVERNO
FAVORÁVEL	13,2	15,4
MÉDIO	13,6	15,6
DESFAV.	14,3	15,8

GANHOS DESF./FAVOR. (%)

8,34

VARIEDADES: RB867515 RB72454

CONCEITO ATUAL

MATRIZ DE AMBIENTES

Tabela 1. Matriz de ambientes de produção, com nove caselas dadas pelas combinações de ambientes/solos e épocas de colheita.

Solos	Safra outono 01/Abril a 21/Jun	Safra Inverno 22/Jun a 21/Set	Safra primavera 22/Set a 30/Nov
Favoráveis	1	2 A	SAFRA DE PRIMAVERA LOCADA EM AMBIENTES
Médios	AMBIENTES		MAIS FAVORÁVEIS
Desfavoráveis	DESFAVORÁVEIS P/ A SAFRA DE OUTONO	7	9

CICLO: 10 CORTE	GRUPO/ ÉPOCA				
AMBIENTE	ABR-JUNHO	JULH-AGO	SET-OUT		
A1	12,65	15,06	15,85		
A2	14,09	15,59	16,59		
B1	13,13	15,76	16,38		
B2	12,76	15,68	15,94		
C1	12,97	15,84	16,49		
C2	13,53	15,57	16,14		
D1	13,63	15,68	15,98		
D2	14,58	15,25	16,35		
E1	14,26	16,47	16,21		
E2	13,82	16,28	16,66		
FAVORÁVEL	13,19	DOL-0/-CA	NA . 0.00		
DESFAVORÁVEL	14,07	POL % CANA = +0,88			
GANHOS 10 CORTE	6,70	2,16	0,42		
No DADOS (PARCELAS)	1755	1414	964		

EFEITO DO AMBIENTE SOBRE A MATURAÇÃO C.PLANTA

VARIEDADES RB867515 **RB72454** RB835486 RB855453 SP79-1011 SP81-3250 SP80-1842 SP80-1816 IACSP95-5000 IAC91-1099 IAC87-3396

CERRADO

CICLO: 10 CORTE	GRUPO/ ÉPOCA				
AMBIENTE	ABR-JUNHO	JULH-AGO	SET-OUT		
A1	11,59	14,85	15,66		
A2	14,42	15,78	13,25		
B1	13,32	15,18	15,19		
B2	12,77	16,33	16,34		
C1	13,32	16,36	15,84		
C2	12,77	15,69	15,73		
D1	13,09	15,69	15,58		
D2	15,64	15,53	16,39		
E1	13,24	15,88	15,15		
E2	13,21	16,14	16,25		
FAVORÁVEL	13,03				
DESFAVORÁVEL	13,80	POL % CANA = +0,7			
GANHOS 10 CORTE	5,86	0,71	3,31		
No DADOS (PARCELAS)	357	412	288		

EFEITO DO AMBIENTE SOBRE A MATURAÇÃO C.PLANTA

VARIEDADES

RB867515 RB72454 RB835486 RB855453 SP79-1011 SP81-3250 SP80-1842 SP80-1846 IACSP95-5000 IAC91-1099 IAC87-3396

CICLO: SOCAS (2, 3 e 4os CORTES)	GRUPO/ ÉPOCA					
AMBIENTE	ABR-JUNHO	JULH-AGO	SET-OUT			
A1	13,87	16,48	16,35			
A2	14,98	15,89	17,04			
B1	13,44	16,04	16,13			
B2	14,87	16,18	16,39			
C1	13,09	16,01	16,79			
C2	13,43	16,08	16,58			
D1	14,81	15,95	16,45			
D2	14,63	16,23	15,81			
E1	14,63	16,36	16,72			
E2	14,88	16,56	17,02			
FAVORÁVEL	13,95	DOL % CAA	14 - 10 70 -			
DESFAVORÁVEL	14,74	POL % CAN	NA = +U,/9			
GANHOS socas	5,67	1,00	-0,28			
No DADOS (PARCELAS)	3987	3216	1950			

EFEITO DO AMBIENTE SOBRE A MATURAÇÃO SOCAS

VARIEDADES

RB867515
RB72454
RB835486
RB855453
SP79-1011
SP81-3250
SP80-1842
SP80-1816
IACSP95-5000
IAC91-1099
IAC87-3396

EFEITO DO FLORESCIMENTO E ISOPORIZAÇÃO SOBRE PESO DO COLMO (KG) – RB72454

RB72454		ÉPOCA CORTE									
(925 PARCELAS)		MAIO/JUNHO		JULHO/AGOSTO			SET/OUTUBRO				
ESTÁGIO											
DE CORTE	ТСН	No COLMOS	PESO (KG/COLMO)	ТСН	No COLMOS	PESO (KG/COLMO)	TCH	No COLMOS	PESO (KG/COLMO)		
1	117,70	10,46	1,69	121,00	11,58	1,57	122,15	12,43	1,47		
2	93,25	11,85	1,18	98,71	12,16	1,22	87,66	11,59	1,13		
3	83,62	10,75	1,17	78,81	12,01	0,98	71,97	11,80	0,91		
4	76,38	12,08	0,95	78,15	12,14	0,97	63,24	11,27	0,84		

LANDELL et al, CAIANA, 2012

EFEITO DO FLORESCIMENTO E ISOPORIZAÇÃO SOBRE PESO DO COLMO (KG) – RB867515

RB867515	ÉPOCA CORTE										
(1209 PARCELAS)		MAIO/JUNHC		JULHO/AGOSTO			SET/OUTUBRO				
ESTÁGIO											
DE CORTE	ТСН	No COLMOS	PESO (KG/COLMO)	ТСН	No COLMOS	PESO (KG/COLMO)	ТСН	No COLMOS	PESO (KG/COLMO)		
1	120,00	10,72	1,68	127,40	11,08	1,72	125,35	10,68	1,76		
2	101,58	11,28	1,35	100,73	11,45	1,32	95,50	11,82	1,21		
3	93,82	11,50	1,22	88,39	11,66	1,14	83,40	11,26	1,11		
4	74,50	10,31	1,08	87,89	11,86	1,11	72,26	11,74	0,92		

LANDELL et al, CAIANA, 2012

EFEITO DO FLORESCIMENTO E ISOPORIZAÇÃO SOBRE PESO DO COLMO (KG) – RB867515 ESTADO DE GOIÁS

DADOS DA RB867515, 834 PARCELAS

	OUTONO			INVERNO			PRIMAVERA		
CORTE/CICLO	тсн	No COLMOS	PESO COLMOS	тсн	No COLMOS	PESO COLMOS	тсн	No COLMOS	PESO COLMOS
1	110,9	10,7	1,55	111,7	10,9	1,54	99,0	10,1	1,47
2	96,5	11,5	1,26	90,3	11,7	1,15	89,8	11,7	1,15
3	98,5	12,1	1,23	88,9	12,8	1,04	79,4	11,8	1,01
4	82,8	12,2	1,02	79,8	12,7	0,94	71,0	12,0	0,89
	média 4	4 cortes	1,26			1,17			1,13
	média 3 socas 1,17			1,05			1,0		

LANDELL et al, CAIANA, 2014

FONTE: CAIANA 2013

No PARCELAS: 26.053

SOCAS REDUÇÃO DE 15,2%

. 4	رج		COF	RTES		
GOIAS RIV		1	2	3	4	TCH
, k	_					•
■	1	102,0	93,5	84,2	74,8	88,6
GRUPO/ ÉPOCA	2	98,0	89,0	62,7	66,9	7 9,1
Ū	3	92,7	84,1	55,1	51,2	70,8

FONTE: CAIANA 2013

No PARCELAS: 6.454

REDUÇÃO DE 24,6%

IAC91-1099

TCH

ECTÁCIO DE	GRUPO/ EPOCA			
ESTÁGIO DE				redução (%)
CORTE	OUTONO	INVERNO	PRIMAVERA	out/prim
1	133,8	126,0	126,5	5,5
2	115,0	105,1	100,1	13,0
3	106,6	91,7	90,5	15,1
4	92,2	89,1	77,2	16,3

MUITO OBRIGADO PELA ATENÇÃO!

mlandell@iac.sp.gov.br